{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:42:31Z","timestamp":1742805751739,"version":"3.37.3"},"reference-count":65,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100005183","name":"Atilim \u00dcniversitesi","doi-asserted-by":"publisher","award":["AT\u00dc-LAP-C-1516-04"],"id":[{"id":"10.13039\/501100005183","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.bspc.2021.103242","type":"journal-article","created":{"date-parts":[[2021,10,19]],"date-time":"2021-10-19T09:51:41Z","timestamp":1634637101000},"page":"103242","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":50,"special_numbering":"PB","title":["Deep learning based fall detection using smartwatches for healthcare applications"],"prefix":"10.1016","volume":"71","author":[{"given":"G\u00f6khan","family":"\u015eeng\u00fcl","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9542-6965","authenticated-orcid":false,"given":"Murat","family":"Karakaya","sequence":"additional","affiliation":[]},{"given":"Sanjay","family":"Misra","sequence":"additional","affiliation":[]},{"given":"Olusola O.","family":"Abayomi-Alli","sequence":"additional","affiliation":[]},{"given":"Robertas","family":"Dama\u0161evi\u010dius","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2021.103242_b0005","unstructured":"S. Abbate M. Avvenuti P. Corsini J. Light A. Vecchio Y.K. Tan Wireless Sensor Networks: Application-Centric Design 2010 InTech 10.5772\/13802."},{"key":"10.1016\/j.bspc.2021.103242_b0010","doi-asserted-by":"crossref","first-page":"104090","DOI":"10.1016\/j.imavis.2020.104090","article-title":"A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection","volume":"106","author":"Afza","year":"2021","journal-title":"Image and Vision Computing"},{"issue":"17","key":"10.1016\/j.bspc.2021.103242_b0015","doi-asserted-by":"crossref","first-page":"3808","DOI":"10.3390\/s19173808","article-title":"Multi-sensor fusion for activity recognition\u2014a survey","volume":"19","author":"Aguileta","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2021.103242_b0020","doi-asserted-by":"crossref","first-page":"104068","DOI":"10.1016\/j.ijmedinf.2019.104068","article-title":"Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer","volume":"136","author":"Alabi","year":"2020","journal-title":"International Journal of Medical Informatics"},{"key":"10.1016\/j.bspc.2021.103242_b0025","doi-asserted-by":"crossref","unstructured":"Aphairaj, D., Kitsonti, M., Thanapornsawan, T. (2019). Fall detection system with 3-axis accelerometer. In Journal of Physics: Conference Series (Vol. 1380, No. 1, p. 012060).","DOI":"10.1088\/1742-6596\/1380\/1\/012060"},{"key":"10.1016\/j.bspc.2021.103242_b0030","unstructured":"Asif, U., Von Cavallar, S., Tang, J., Harrer, S. (2020). SSHFD: Single Shot Human Fall Detection with Occluded Joints Resilience. 24th European Conference on Artificial Intelligence, ECAI 2020, 29 August-8 September 2020, Santiago de Compostela, Spain. Frontiers in Artificial Intelligence and Applications 325, IOS Press 2020, pp. 2656-2663."},{"issue":"7","key":"10.1016\/j.bspc.2021.103242_b0035","doi-asserted-by":"crossref","first-page":"e0180318","DOI":"10.1371\/journal.pone.0180318","article-title":"Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets","volume":"12","author":"Aziz","year":"2017","journal-title":"PLoS one"},{"issue":"3","key":"10.1016\/j.bspc.2021.103242_b0040","doi-asserted-by":"crossref","first-page":"521","DOI":"10.3390\/s19030521","article-title":"A comparison of machine learning and deep learning techniques for activity recognition using mobile devices","volume":"19","author":"Baldominos","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2021.103242_b0045","series-title":"Recent Advances in High-Level Fusion Methods to Classify Multiple Analytical Chemical Data","first-page":"129","author":"Ballabio","year":"2019"},{"issue":"1\u20132","key":"10.1016\/j.bspc.2021.103242_b0050","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1177\/0020294018813692","article-title":"Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm","volume":"52","author":"Balli","year":"2019","journal-title":"Measurement and Control"},{"issue":"41-42","key":"10.1016\/j.bspc.2021.103242_b0055","doi-asserted-by":"crossref","first-page":"30509","DOI":"10.1007\/s11042-020-09004-3","article-title":"Vision-based human activity recognition: a survey","volume":"79","author":"Beddiar","year":"2020","journal-title":"Multimed Tools Appl"},{"issue":"5","key":"10.1016\/j.bspc.2021.103242_b0060","doi-asserted-by":"crossref","first-page":"8553","DOI":"10.1109\/JIOT.2019.2920283","article-title":"IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment","volume":"6","author":"Bianchi","year":"2019","journal-title":"IEEE Internet of Things Journal"},{"issue":"12","key":"10.1016\/j.bspc.2021.103242_b0065","doi-asserted-by":"crossref","first-page":"2047","DOI":"10.1016\/j.aml.2012.04.016","article-title":"Fitting data using optimal Hermite type cubic interpolating splines","volume":"25","author":"Bica","year":"2012","journal-title":"Applied Mathematics Letters"},{"issue":"7","key":"10.1016\/j.bspc.2021.103242_b0070","doi-asserted-by":"crossref","first-page":"1856","DOI":"10.3390\/s20071856","article-title":"A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory","volume":"20","author":"Bragan\u00e7a","year":"2020","journal-title":"Sensors"},{"issue":"4","key":"10.1016\/j.bspc.2021.103242_b0075","doi-asserted-by":"crossref","first-page":"649","DOI":"10.3390\/sym12040649","article-title":"A Study of the use of gyroscope measurements in wearable fall detection systems","volume":"12","author":"Casilari","year":"2020","journal-title":"Symmetry"},{"issue":"8672567","key":"10.1016\/j.bspc.2021.103242_b0080","doi-asserted-by":"crossref","first-page":"38670","DOI":"10.1109\/ACCESS.2019.2906693","article-title":"A Machine Learning Approach for Fall Detection and Daily Living Activity Recognition","volume":"7","author":"Chelli","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2021.103242_b0085","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.measurement.2019.03.079","article-title":"Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch","volume":"140","author":"Chen","year":"2019","journal-title":"Measurement: Journal of the International Measurement Confederation"},{"issue":"12","key":"10.1016\/j.bspc.2021.103242_b0090","article-title":"Automatic fall detection using smartphone acceleration sensor","volume":"7","author":"Dang","year":"2016","journal-title":"International Journal of Advanced Computer Science and Applications"},{"key":"10.1016\/j.bspc.2021.103242_b0095","doi-asserted-by":"crossref","first-page":"210816","DOI":"10.1109\/ACCESS.2020.3037715","article-title":"Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey","volume":"8","author":"Demrozi","year":"2020","journal-title":"IEEE access : practical innovations, open solutions"},{"issue":"9083980","key":"10.1016\/j.bspc.2021.103242_b0100","doi-asserted-by":"crossref","first-page":"83791","DOI":"10.1109\/ACCESS.2020.2991891","article-title":"Sensing technology for human activity recognition: A comprehensive survey","volume":"8","author":"Fu","year":"2020","journal-title":"IEEE Access"},{"issue":"11","key":"10.1016\/j.bspc.2021.103242_b0105","doi-asserted-by":"crossref","first-page":"2866","DOI":"10.3390\/en11112866","article-title":"Accurate fall detection and localization for elderly people based on neural network and energy-efficient wireless sensor network","volume":"11","author":"Gharghan","year":"2018","journal-title":"Energies"},{"key":"10.1016\/j.bspc.2021.103242_b0110","doi-asserted-by":"crossref","first-page":"133982","DOI":"10.1109\/ACCESS.2020.3010715","article-title":"Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection","volume":"8","author":"Gholamiangonabadi","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2021.103242_b0115","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.inffus.2020.04.004","article-title":"Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors","volume":"62","author":"Gjoreski","year":"2020","journal-title":"Information Fusion"},{"issue":"6","key":"10.1016\/j.bspc.2021.103242_b0120","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1007\/s10916-016-0497-2","article-title":"Smartphone-Based Patients\u2019 activity recognition by using a self-learning scheme for medical monitoring","volume":"40","author":"Guo","year":"2016","journal-title":"Journal of medical systems"},{"issue":"4","key":"10.1016\/j.bspc.2021.103242_b0125","first-page":"775","article-title":"A new Framework for Elderly Fall Detection Using Coupled Hidden Markov Models","volume":"16","author":"Hagui","year":"2019","journal-title":"The International Arab Journal Of Information Technology"},{"issue":"6","key":"10.1016\/j.bspc.2021.103242_b0130","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1109\/MIM.2017.8121952","article-title":"Vision-based fall detection system for improving safety of elderly people","volume":"20","author":"Harrou","year":"2017","journal-title":"IEEE Instrumentation Measurement Magazine"},{"issue":"8","key":"10.1016\/j.bspc.2021.103242_b0135","doi-asserted-by":"crossref","first-page":"1065","DOI":"10.3390\/e23081065","article-title":"A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors","volume":"23","author":"Helmi","year":"2021","journal-title":"Entropy"},{"issue":"12","key":"10.1016\/j.bspc.2021.103242_b0140","doi-asserted-by":"crossref","first-page":"4528","DOI":"10.1109\/JSEN.2019.2898891","article-title":"Activity-Aware Fall Detection and Recognition Based on Wearable Sensors","volume":"19","author":"Hussain","year":"2019","journal-title":"IEEE Sensors Journal"},{"key":"10.1016\/j.bspc.2021.103242_b0145","unstructured":"Z. Hussain M. Sheng W.E. Zhang Different Approaches for Human Activity Recognition: A Survey. arXiv preprint arXiv:1906.05074 2019."},{"issue":"17","key":"10.1016\/j.bspc.2021.103242_b0150","doi-asserted-by":"crossref","first-page":"3688","DOI":"10.3390\/s19173688","article-title":"An energy-efficient method for human activity recognition with segment-level change detection and deep learning","volume":"19","author":"Jeong","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2021.103242_b0155","unstructured":"Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015."},{"issue":"3","key":"10.1016\/j.bspc.2021.103242_b0160","doi-asserted-by":"crossref","first-page":"4061","DOI":"10.32604\/cmc.2021.017800","article-title":"Multi-Layered Deep Learning Features Fusion for Human Action Recognition","volume":"69","author":"Kiran","year":"2021","journal-title":"Computers, Materials & Continua"},{"issue":"4","key":"10.1016\/j.bspc.2021.103242_b0165","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1007\/s10708-014-9601-7","article-title":"Small data in the era of big data","volume":"80","author":"Kitchin","year":"2014","journal-title":"GeoJournal"},{"key":"10.1016\/j.bspc.2021.103242_b0170","doi-asserted-by":"crossref","unstructured":"Y. Lee H. Yeh K.-H. Kim O. Choi A real-time fall detection system based on the acceleration sensor of smartphone International Journal of Engineering Business Management 10 2018 184797901775066 10.1177\/1847979017750669.","DOI":"10.1177\/1847979017750669"},{"issue":"3","key":"10.1016\/j.bspc.2021.103242_b0175","doi-asserted-by":"crossref","first-page":"1975","DOI":"10.1007\/s10462-019-09724-5","article-title":"Non-intrusive human activity recognition and abnormal behavior detection on elderly people: a review","volume":"53","author":"Lentzas","year":"2020","journal-title":"Artificial Intelligence Review"},{"issue":"14","key":"10.1016\/j.bspc.2021.103242_b0180","doi-asserted-by":"crossref","first-page":"3213","DOI":"10.3390\/s19143213","article-title":"Human activity recognition using inertial sensors in a smartphone: An overview","volume":"19","author":"Lima","year":"2019","journal-title":"Sensors"},{"issue":"1","key":"10.1016\/j.bspc.2021.103242_b0185","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1109\/JBHI.2018.2808281","article-title":"Deep learning for fall detection: Three-dimensional CNN Combined with LSTM on video kinematic data","volume":"23","author":"Lu","year":"2019","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"issue":"1","key":"10.1016\/j.bspc.2021.103242_b0190","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1109\/JBHI.2019.2906499","article-title":"Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning","volume":"24","author":"Martinez","year":"2020","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"issue":"2","key":"10.1016\/j.bspc.2021.103242_b0195","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3377882","article-title":"Human Activity Recognition from Multiple Sensors Data Using Multi-fusion Representations and CNNs","volume":"16","author":"Noori","year":"2020","journal-title":"ACM Transactions on Multimedia Computing, Communications, and Applications"},{"key":"10.1016\/j.bspc.2021.103242_b0200","series-title":"Fall detection-principles and methods","first-page":"1663","author":"Noury","year":"2007"},{"key":"10.1016\/j.bspc.2021.103242_b0205","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.inffus.2018.06.002","article-title":"Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions","volume":"46","author":"Nweke","year":"2019","journal-title":"Information Fusion"},{"issue":"4","key":"10.1016\/j.bspc.2021.103242_b0210","doi-asserted-by":"crossref","first-page":"301","DOI":"10.3233\/AIS-190529","article-title":"Sensor-based activity recognition in the context of ambient assisted living systems: A review","volume":"11","author":"Patel","year":"2019","journal-title":"Journal of Ambient Intelligence and Smart Environments"},{"issue":"1","key":"10.1016\/j.bspc.2021.103242_b0215","first-page":"37","article-title":"Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness Correlation","volume":"2","author":"Powers","year":"2011","journal-title":"Journal of Machine Learning Technologies"},{"issue":"8","key":"10.1016\/j.bspc.2021.103242_b0220","doi-asserted-by":"crossref","first-page":"1395","DOI":"10.3390\/diagnostics11081395","article-title":"Local pattern transformation based feature extraction for recognition of parkinson\u2019s disease based on gait signals","volume":"11","author":"Priya","year":"2021","journal-title":"Diagnostics"},{"key":"10.1016\/j.bspc.2021.103242_b0225","doi-asserted-by":"crossref","first-page":"77702","DOI":"10.1109\/ACCESS.2019.2922708","article-title":"Research of fall detection and fall prevention technologies: A systematic review","volume":"7","author":"Ren","year":"2019","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.bspc.2021.103242_b0230","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1007\/s12652-017-0606-1","article-title":"Online human movement classification using wrist-worn wireless sensors","volume":"10","author":"Sarcevic","year":"2019","journal-title":"Journal of Ambient Intelligence and Humanized Computing"},{"issue":"11","key":"10.1016\/j.bspc.2021.103242_b0235","doi-asserted-by":"crossref","first-page":"2673","DOI":"10.1109\/78.650093","article-title":"Bidirectional recurrent neural networks","volume":"45","author":"Schuster","year":"1997","journal-title":"IEEE Transactions on Signal Processing"},{"key":"10.1016\/j.bspc.2021.103242_b0240","doi-asserted-by":"crossref","DOI":"10.1007\/s11042-021-11105-6","article-title":"Fusion of smartphone sensor data for classification of daily user activities","author":"\u015eeng\u00fcl","year":"2021","journal-title":"Multimedia Tools and Applications"},{"key":"10.1016\/j.bspc.2021.103242_b0245","doi-asserted-by":"crossref","first-page":"132306","DOI":"10.1016\/j.physd.2019.132306","article-title":"Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network","volume":"404","author":"Sherstinsky","year":"2020","journal-title":"Physica D: Nonlinear Phenomena"},{"key":"10.1016\/j.bspc.2021.103242_b0250","series-title":"Smart devices are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition","first-page":"127","author":"Stisen","year":"2015"},{"issue":"11","key":"10.1016\/j.bspc.2021.103242_b0255","doi-asserted-by":"crossref","first-page":"5433","DOI":"10.1007\/s12652-020-01899-y","article-title":"Smartphone based human activity monitoring and recognition using ML and DL: a comprehensive survey","volume":"11","author":"Thakur","year":"2020","journal-title":"Journal of Ambient Intelligence and Humanized Computing"},{"issue":"1","key":"10.1016\/j.bspc.2021.103242_b0260","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.aci.2018.08.003","article-title":"Classification assessment methods","volume":"17","author":"Tharwat","year":"2021","journal-title":"Applied Computing and Informatics"},{"issue":"1","key":"10.1016\/j.bspc.2021.103242_b0265","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1080\/21642583.2020.1723142","article-title":"Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection","volume":"8","author":"Tian","year":"2020","journal-title":"Systems Science Control Engineering"},{"issue":"19","key":"10.1016\/j.bspc.2021.103242_b0275","doi-asserted-by":"crossref","first-page":"8413","DOI":"10.1109\/JSEN.2018.2871203","article-title":"Activity Recognition for Cognitive Assistance Using Body Sensors Data and Deep Convolutional Neural Network","volume":"19","author":"Uddin","year":"2019","journal-title":"IEEE Sensors Journal"},{"key":"10.1016\/j.bspc.2021.103242_b0280","first-page":"2579","article-title":"Visualizing Data Using t-SNE","volume":"9","author":"van der Maaten","year":"2008","journal-title":"Journal of Machine Learning Research."},{"issue":"4","key":"10.1016\/j.bspc.2021.103242_b0285","doi-asserted-by":"crossref","first-page":"3329","DOI":"10.1007\/s13369-018-3496-4","article-title":"Development of a real-time, simple and high-accuracy fall detection system for elderly using 3-DOF accelerometers","volume":"44","author":"Van Thanh","year":"2019","journal-title":"Arabian Journal for Science and Engineering"},{"issue":"3","key":"10.1016\/j.bspc.2021.103242_b0290","doi-asserted-by":"crossref","first-page":"458","DOI":"10.3390\/s19030458","article-title":"Human physical activity recognition using smartphone sensors","volume":"19","author":"Voicu","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2021.103242_b0295","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.patrec.2018.02.010","article-title":"Deep learning for sensor-based activity recognition: A survey","volume":"119","author":"Wang","year":"2019","journal-title":"Pattern Recognition Letters"},{"key":"10.1016\/j.bspc.2021.103242_b0300","doi-asserted-by":"crossref","first-page":"470","DOI":"10.1016\/j.ijepes.2019.02.022","article-title":"Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting","volume":"109","author":"Wang","year":"2019","journal-title":"International Journal of Electrical Power Energy Systems"},{"key":"10.1016\/j.bspc.2021.103242_b0305","series-title":"Smartwatch-based activity recognition: A machine learning approach","first-page":"426","author":"Weiss","year":"2016"},{"key":"10.1016\/j.bspc.2021.103242_b0310","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.procs.2018.04.110","article-title":"Fall detection system for elderly people using IoT and big data","volume":"130","author":"Yacchirema","year":"2018","journal-title":"Procedia computer science"},{"key":"10.1016\/j.bspc.2021.103242_b0315","doi-asserted-by":"crossref","unstructured":"H. Yao M. Yang T. Chen Y. Wei Y.u. Zhang Depth-based human activity recognition via multi-level fused features and fast broad learning system International Journal of Distributed Sensor Networks 16 2 2020 155014772090783 10.1177\/1550147720907830.","DOI":"10.1177\/1550147720907830"},{"issue":"3-4","key":"10.1016\/j.bspc.2021.103242_b0320","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/S1672-0229(08)60011-X","article-title":"A modified T-test feature selection method and its application on the HapMap genotype data","volume":"5","author":"Zhou","year":"2007","journal-title":"Genomics, proteomics bioinformatics"},{"issue":"8734079","key":"10.1016\/j.bspc.2021.103242_b0325","doi-asserted-by":"crossref","first-page":"75490","DOI":"10.1109\/ACCESS.2019.2922104","article-title":"Efficient Human Activity Recognition Solving the Confusing Activities Via Deep Ensemble Learning","volume":"7","author":"Zhu","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2021.103242_bib326","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets.","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421008399?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421008399?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T23:33:22Z","timestamp":1681601602000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809421008399"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":65,"alternative-id":["S1746809421008399"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2021.103242","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep learning based fall detection using smartwatches for healthcare applications","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2021.103242","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103242"}}