{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T06:29:15Z","timestamp":1726381755628},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.bspc.2021.103048","type":"journal-article","created":{"date-parts":[[2021,8,14]],"date-time":"2021-08-14T03:52:48Z","timestamp":1628913168000},"page":"103048","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["sEMG pattern recognition based on recurrent neural network"],"prefix":"10.1016","volume":"70","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1756-6804","authenticated-orcid":false,"given":"Tarek M.","family":"Bittibssi","sequence":"first","affiliation":[]},{"given":"Abd Haliem","family":"Zekry","sequence":"additional","affiliation":[]},{"given":"Mohamed A.","family":"Genedy","sequence":"additional","affiliation":[]},{"given":"Shady A.","family":"Maged","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2021.103048_b0005","doi-asserted-by":"crossref","unstructured":"A.A. Neacsu, G. Cioroiu, A. Radoi, C. Burileanu, Automatic EMG-based hand gesture recognition system using time-domain descriptors and fully-connected neural networks, in: 2019 42nd Int. Conf. Telecommun. Signal Process. TSP 2019. (2019) 232\u2013235. https:\/\/doi.org\/10.1109\/TSP.2019.8768831.","DOI":"10.1109\/TSP.2019.8768831"},{"key":"10.1016\/j.bspc.2021.103048_b0010","doi-asserted-by":"crossref","unstructured":"P. Tsinganos, B. Cornelis, J. Cornelis, B. Jansen, A. Skodras, Improved gesture recognition based on sEMG signals and TCN, in: ICASSP IEEE Int. Conf. Acoust. Speech Signal Process. - Proc. 2019-May (2019) 1169\u20131173. https:\/\/doi.org\/10.1109\/ICASSP.2019.8683239.","DOI":"10.1109\/ICASSP.2019.8683239"},{"key":"10.1016\/j.bspc.2021.103048_b0015","doi-asserted-by":"crossref","first-page":"760","DOI":"10.1109\/TNSRE.2019.2896269","article-title":"Deep learning for electromyographic hand gesture signal classification using transfer learning","volume":"27","author":"Cote-Allard","year":"2019","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.bspc.2021.103048_b0020","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","article-title":"ImageNet classification with deep convolutional neural networks","volume":"60","author":"Krizhevsky","year":"2017","journal-title":"Commun. ACM"},{"key":"10.1016\/j.bspc.2021.103048_b0025","article-title":"Domain adaptation for sEMG-based gesture recognition with recurrent neural networks","author":"Ketyko","year":"2019","journal-title":"Proc. Int. Jt. Conf. Neural Networks"},{"key":"10.1016\/j.bspc.2021.103048_b0030","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1038\/srep36571","article-title":"Gesture recognition by instantaneous surface EMG images","volume":"6","author":"Geng","year":"2016","journal-title":"Sci. Rep."},{"key":"10.1016\/j.bspc.2021.103048_b0035","doi-asserted-by":"crossref","unstructured":"U. C\u00f4t\u00e9-Allard, C.L. Fall, A. Campeau-Lecoursy, C. Gosseliny, F. Laviolettez, B. Gosselin, Transfer learning for sEMG hand gestures recognition using convolutional neural networks, in: 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017. 2017-Janua (2017) 1663\u20131668. https:\/\/doi.org\/10.1109\/SMC.2017.8122854.","DOI":"10.1109\/SMC.2017.8122854"},{"key":"10.1016\/j.bspc.2021.103048_b0040","doi-asserted-by":"crossref","first-page":"e0206049","DOI":"10.1371\/journal.pone.0206049","article-title":"A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition","volume":"13","author":"Hu","year":"2018","journal-title":"PLoS One"},{"key":"10.1016\/j.bspc.2021.103048_b0045","doi-asserted-by":"crossref","first-page":"1255","DOI":"10.1109\/TBME.2003.818469","article-title":"A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis","volume":"50","author":"Karlik","year":"2003","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2021.103048_b0050","first-page":"3453","article-title":"Intelligent robotic wheelchair with EMG-, gesture-, and voice-based interfaces","volume":"4","author":"Moon","year":"2003","journal-title":"IEEE Int. Conf. Intell. Robot. Syst."},{"key":"10.1016\/j.bspc.2021.103048_b0055","doi-asserted-by":"crossref","unstructured":"Y. Liu, S. Guo, S. Zhang, L. Boulardot, A novel sEMG control-based variable stiffness exoskeleton, in: 2017 IEEE Int. Conf. Mechatronics Autom. ICMA 2017. (2017) 1444\u20131449. https:\/\/doi.org\/10.1109\/ICMA.2017.8016029.","DOI":"10.1109\/ICMA.2017.8016029"},{"key":"10.1016\/j.bspc.2021.103048_b0060","doi-asserted-by":"crossref","first-page":"61","DOI":"10.14203\/j.mev.2019.v10.61-71","article-title":"Design and development of the sEMG-based exoskeleton strength enhancer for the legs","volume":"10","author":"Cenit","year":"2019","journal-title":"J. Mechatronics, Electr. Power, Veh. Technol."},{"key":"10.1016\/j.bspc.2021.103048_b0065","doi-asserted-by":"crossref","first-page":"e0160817","DOI":"10.1371\/journal.pone.0160817","article-title":"Learning an EMG controlled game: Task-specific adaptations and transfer","volume":"11","author":"van Dijk","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.bspc.2021.103048_b0070","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1016\/j.specom.2009.11.003","article-title":"Speech interfaces based upon surface electromyography","volume":"52","author":"Jorgensen","year":"2010","journal-title":"Speech Commun."},{"key":"10.1016\/j.bspc.2021.103048_b0075","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.patrec.2019.07.021","article-title":"EMG-based online classification of gestures with recurrent neural networks","volume":"128","author":"Sim\u00e3o","year":"2019","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.bspc.2021.103048_b0080","doi-asserted-by":"crossref","unstructured":"R. Alam, S.R. Rhivu, M.A. Haque, Improved gesture recognition using deep neural networks on sEMG, (2018) 1\u20134. https:\/\/doi.org\/10.1109\/iceast.2018.8434493.","DOI":"10.1109\/ICEAST.2018.8434493"},{"key":"10.1016\/j.bspc.2021.103048_b0085","unstructured":"Hyperparameters: Optimization Methods and Real World Model Management - MissingLink.ai, (n.d.). https:\/\/missinglink.ai\/guides\/neural-network-concepts\/hyperparameters-optimization-methods-and-real-world-model-management\/ (accessed November 19, 2020)."},{"key":"10.1016\/j.bspc.2021.103048_b0090","unstructured":"A Gentle Introduction to Batch Normalization for Deep Neural Networks, (n.d.). https:\/\/machinelearningmastery.com\/batch-normalization-for-training-of-deep-neural-networks\/ (accessed November 19, 2020)."},{"key":"10.1016\/j.bspc.2021.103048_b0095","unstructured":"Batch Normalization in Deep Neural Networks, (n.d.). https:\/\/www.kdnuggets.com\/2020\/08\/batch-normalization-deep-neural-networks.html (accessed November 19, 2020)."},{"key":"10.1016\/j.bspc.2021.103048_b0100","unstructured":"Electromyography (EMG) Dataset | Kaggle, (n.d.). https:\/\/www.kaggle.com\/nccvector\/electromyography-emg-dataset (accessed November 19, 2020)."},{"key":"10.1016\/j.bspc.2021.103048_b0105","unstructured":"Classify gestures by reading muscle activity. | Kaggle, (n.d.). https:\/\/www.kaggle.com\/kyr7plus\/emg-4 (accessed November 19, 2020)."},{"key":"10.1016\/j.bspc.2021.103048_b0110","unstructured":"UCI Machine Learning Repository: EMG dataset in Lower Limb Data Set, (n.d.). http:\/\/archive.ics.uci.edu\/ml\/datasets\/emg+dataset+in+lower+limb# (accessed November 19, 2020)."},{"key":"10.1016\/j.bspc.2021.103048_b0115","unstructured":"UCI Machine Learning Repository: Human Activity Recognition Using Smartphones Data Set, (n.d.). https:\/\/archive.ics.uci.edu\/ml\/datasets\/human+activity+recognition+using+smartphones (accessed November 19, 2020)."},{"key":"10.1016\/j.bspc.2021.103048_b0120","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1109\/TNSRE.2014.2328495","article-title":"Characterization of a benchmark database for myoelectric movement classification","volume":"23","author":"Atzori","year":"2015","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.bspc.2021.103048_b0125","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2014.53","article-title":"Electromyography data for non-invasive naturally-controlled robotic hand prostheses","volume":"1","author":"Atzori","year":"2014","journal-title":"Sci. Data"},{"key":"10.1016\/j.bspc.2021.103048_b0130","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12984-017-0284-4","article-title":"Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements","volume":"14","author":"Krasoulis","year":"2017","journal-title":"J. Neuroeng. Rehabil."},{"key":"10.1016\/j.bspc.2021.103048_b0135","unstructured":"R. Wen, K. Torkkola, B. Narayanaswamy, D. Madeka, A Multi-Horizon Quantile Recurrent Forecaster, (2017). http:\/\/arxiv.org\/abs\/1711.11053."},{"key":"10.1016\/j.bspc.2021.103048_b0140","doi-asserted-by":"crossref","unstructured":"T. Mikolov, M. Karafi\u00e1t, L. Burget, C. Jan, S. Khudanpur, Recurrent neural network based language model, in: Proc. 11th Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH 2010. (2010) 1045\u20131048.","DOI":"10.21437\/Interspeech.2010-343"},{"key":"10.1016\/j.bspc.2021.103048_b0145","doi-asserted-by":"crossref","first-page":"1235","DOI":"10.1162\/neco_a_01199","article-title":"A review of recurrent neural networks: Lstm cells and network architectures","volume":"31","author":"Yu","year":"2019","journal-title":"Neural Comput."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421006455?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421006455?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T23:23:58Z","timestamp":1681601038000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809421006455"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":29,"alternative-id":["S1746809421006455"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2021.103048","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"sEMG pattern recognition based on recurrent neural network","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2021.103048","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103048"}}