{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:08:31Z","timestamp":1728176911168},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2021,8]]},"DOI":"10.1016\/j.bspc.2021.102905","type":"journal-article","created":{"date-parts":[[2021,6,30]],"date-time":"2021-06-30T07:01:14Z","timestamp":1625036474000},"page":"102905","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Machine learning and regression analysis for diagnosis of bruxism by using EMG signals of jaw muscles"],"prefix":"10.1016","volume":"69","author":[{"given":"Temel","family":"Sonmezocak","sequence":"first","affiliation":[]},{"given":"Serkan","family":"Kurt","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.bspc.2021.102905_b0005","doi-asserted-by":"crossref","first-page":"309","DOI":"10.5177\/ntvt.2017.06.16194","article-title":"Chewing on bruxism. Diagnosis, imaging, epidemiology, aetiology","volume":"124","author":"Lobbezoo","year":"2017","journal-title":"Ned. Tijdschr. Tandheelkd."},{"key":"10.1016\/j.bspc.2021.102905_b0010","first-page":"1387","article-title":"International classification of sleep disorders","volume":"146","author":"Sateia","year":"2014","journal-title":"Sleep Med."},{"key":"10.1016\/j.bspc.2021.102905_b0015","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1111\/j.1365-2842.2006.01609.x","article-title":"Bruxism: its multiple causes and its effects on dental implants","volume":"33","author":"Lobbezoo","year":"2006","journal-title":"J. Oral Rehabil."},{"key":"10.1016\/j.bspc.2021.102905_b0020","doi-asserted-by":"crossref","unstructured":"F. Lobbezoo J. Brouwers M. Cune M. Naeije Dental implants in patients with bruxing habits Journal of Oral Rehabilitation 33 2 2006 pp. 152\u20139.114 10.1111\/j.1365-2842.2006.01542.x.","DOI":"10.1111\/j.1365-2842.2006.01542.x"},{"key":"10.1016\/j.bspc.2021.102905_b0025","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1053\/smrv.1999.0070","article-title":"Sleep bruxism; overview of an oromandibular sleep movement disorder","volume":"4","author":"Bader","year":"2000","journal-title":"Sleep Med. Rev."},{"key":"10.1016\/j.bspc.2021.102905_b0030","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1111\/j.1365-2842.1979.tb00408.x","article-title":"The relationship between bruxism and temporomandibular joint dysfunction as shown by computer analysis of nocturnal tooth contact patterns","author":"Trenouth","year":"1979","journal-title":"J Oral Rehabil"},{"key":"10.1016\/j.bspc.2021.102905_b0035","doi-asserted-by":"crossref","DOI":"10.1111\/j.1365-2842.2001.00757.x","article-title":"Influence of nocturnal bruxism on the stomatognathic system. Part 1: a new device for measuring mandibular Movements During Sleep","author":"Amemori","year":"2001","journal-title":"J Oral Rehabil"},{"issue":"1","key":"10.1016\/j.bspc.2021.102905_b0040","doi-asserted-by":"crossref","first-page":"89","DOI":"10.3390\/s20010089","article-title":"Intelligent Occlusion Stabilization Splint with Stress-Sensor System for Bruxism Diagnosis and Treatment","volume":"20","author":"Gao","year":"2020","journal-title":"Sensors"},{"journal-title":"Principles for the management of bruxism","year":"2008","author":"Lobbezoo","key":"10.1016\/j.bspc.2021.102905_b0045"},{"key":"10.1016\/j.bspc.2021.102905_b0050","first-page":"15","article-title":"Do bruxism and temporomandibular Disorders have a cause-and-effect relationship?","volume":"vol-11","author":"Lobbezoo","year":"1997","journal-title":"J. Orofac Pain"},{"key":"10.1016\/j.bspc.2021.102905_b0055","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1016\/j.archoralbio.2006.11.017","article-title":"Genesis of sleep bruxism: motor and autonomic-cardiac interactions","volume":"52","author":"Lavigne","year":"2007","journal-title":"Arch. Oral. Biol"},{"key":"10.1016\/j.bspc.2021.102905_b0060","doi-asserted-by":"crossref","unstructured":"T. Castroflorio, L. Mesin, G. M. Tartaglia, C. Sforza, D. Farina, Use of Electromyographic and Electrocardiographic Signals to Detect Sleep Bruxism Episodes in a Natural Environment, IEEE Journal of Biomedical and Health Informatics, vol. 17,No. 6, 2013. DOI:10.1109\/JBHI.2013.2274532.","DOI":"10.1109\/JBHI.2013.2274532"},{"key":"10.1016\/j.bspc.2021.102905_b0065","first-page":"82553","article-title":"Prognosis of Sleep Bruxism Using Power Spectral Density Approach on EEG Signal of Both EMG1-EMG2 and ECG1-ECG2 Channels","volume":"7","author":"Lai","year":"2019","journal-title":"Special Section on Neural Engineering Informatics"},{"key":"10.1016\/j.bspc.2021.102905_b0070","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1002\/mus.21262","article-title":"Time-frequency analysis of rhythmic masticatory muscle activity","volume":"39","author":"Farella","year":"2009","journal-title":"Muscle Nerve"},{"issue":"12","key":"10.1016\/j.bspc.2021.102905_b0075","doi-asserted-by":"crossref","first-page":"1504","DOI":"10.1016\/j.jdent.2015.10.002","article-title":"Sleep bruxism in individuals with and without attrition-type tooth wear: an exploratory matched case-control electromyographic study","volume":"43","author":"Jonsgar","year":"2015","journal-title":"J Dent."},{"issue":"4","key":"10.1016\/j.bspc.2021.102905_b0080","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/j.jpor.2016.01.001","article-title":"Diagnostic validity of self-reported measures of sleep bruxism using an ambulatory single-channel EMG device","volume":"60","author":"Yachida","year":"2016","journal-title":"J. Prosthodont Res."},{"issue":"1","key":"10.1016\/j.bspc.2021.102905_b0085","doi-asserted-by":"crossref","first-page":"546","DOI":"10.1177\/00220345960750010601","article-title":"Sleep bruxism: validity of clinical research diagnostic criteria in a controlled polysomnographic study","volume":"75","author":"Lavigne","year":"1996","journal-title":"J. Dent. Res."},{"issue":"1","key":"10.1016\/j.bspc.2021.102905_b0090","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1111\/joor.12011","article-title":"Bruxism defined and graded: an international consensus","volume":"40","author":"Lobbezoo","year":"2013","journal-title":"J Oral Rehabil."},{"key":"10.1016\/j.bspc.2021.102905_b0095","article-title":"Portable and wearable electromyographic devices for the assessment of sleep bruxism and awake bruxism: A literature review","author":"Yamaguchi","year":"2020","journal-title":"The Journal of Craniomandibular&Sleep Practice"},{"key":"10.1016\/j.bspc.2021.102905_b0100","doi-asserted-by":"crossref","unstructured":"T. Sonmezocak, S. Kurt, \u201cDetection of EMG signals by neural networks using autoregression and wavelet entropy for bruxism diagnosis,\u201d ELEKTRONIKA IR ELEKTROTECHNIKA(ISSN 1392-1215), Vol. 27 No. 2 (2021), pp. 11-21. https:\/\/doi.org\/10.5755\/j02.eie.28838.","DOI":"10.5755\/j02.eie.28838"},{"key":"10.1016\/j.bspc.2021.102905_b0105","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1111\/j.1365-2842.2005.01442.x","article-title":"Surface EMG of jaw elevator muscles: effect of electrode location and inter-electrode distance","volume":"32","author":"Castroflorio","year":"2005","journal-title":"J. Oral Rehabil."},{"key":"10.1016\/j.bspc.2021.102905_b0110","first-page":"1260","article-title":"Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG","volume":"38","author":"Kahl","year":"2016","journal-title":"signals"},{"issue":"11","key":"10.1016\/j.bspc.2021.102905_b0115","article-title":"Real-time robustness evaluation of regression based myoelectric control against arm position change and donning\/doffing","volume":"12","author":"Hwangi","year":"2017","journal-title":"J. Plos ONE"},{"key":"10.1016\/j.bspc.2021.102905_b0120","doi-asserted-by":"crossref","first-page":"7420","DOI":"10.1016\/j.eswa.2012.01.102","article-title":"Feature reduction and selection for EMG signal classification","volume":"39","author":"Phinyomark","year":"2012","journal-title":"Expert Systems with App."},{"key":"10.1016\/j.bspc.2021.102905_b0125","doi-asserted-by":"crossref","first-page":"734","DOI":"10.1111\/j.1365-2842.2010.02090.x","article-title":"\u201cResearch diagnostic criteria for temporomandibular disorders: Current status & future relevance","volume":"37","author":"Dworkin","year":"2010","journal-title":"J. Oral Rehabil"},{"key":"10.1016\/j.bspc.2021.102905_b0130","doi-asserted-by":"crossref","unstructured":"H. Tankisi D. Burke L. Cui M. de Carvalho S. Kuwabara S.D. Nandedkar S. Rutkove E. Stalberg M. J.A.M. yan Putten, A. Fuglsang-Frederiksen, Standards of instrumentation of EMG Clinical Neurophysiology 131 2020 243 258 10.1016\/j.clinph.2019.07.025.","DOI":"10.1016\/j.clinph.2019.07.025"},{"issue":"2","key":"10.1016\/j.bspc.2021.102905_b0135","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/S1050-6411(00)00046-8","article-title":"Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque- a study using the continuous wavelet transform","volume":"11","author":"Karlsson","year":"2001","journal-title":"J. Electromyogr. Kinesiol"},{"issue":"2","key":"10.1016\/j.bspc.2021.102905_b0140","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1109\/TBME.2002.807641","article-title":"Fatigue analysis of the surface EMG signal in isometric constant force contractions using the average instantaneous frequency","volume":"50","author":"Georgakis","year":"2003","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2021.102905_b0145","doi-asserted-by":"crossref","unstructured":"D. Farina D., M. Gazzoni, R. Merletti, Assessment of low back muscle fatigue by surface emg signal: Methodological aspects J. Electromyogr. Kinesiol 13 4 2003 319 332 10.1016\/S1050-6411(03)00040-3.","DOI":"10.1016\/S1050-6411(03)00040-3"},{"issue":"7","key":"10.1016\/j.bspc.2021.102905_b0150","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1080\/00140138108924875","article-title":"Work load and fatigue in repetitive arm elevations","volume":"24","author":"Hagberg","year":"1981","journal-title":"Ergonomics"},{"issue":"3","key":"10.1016\/j.bspc.2021.102905_b0155","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1080\/00140138208924942","article-title":"Evaluation of amplitude and frequency components of the surface EMG as an index of muscle fatigue","volume":"25","author":"Petrofsky","year":"1982","journal-title":"Ergonomics"},{"key":"10.1016\/j.bspc.2021.102905_b0160","doi-asserted-by":"crossref","unstructured":"A, Phinyomark, C, Limsakul, P. Phutpattaranont, Application of Wavelet Analysis in EMG Feature Extraction for Pattern Classification Measurement Science Review 11 2011 45 52 10.2478\/v10048-011-0009-y.","DOI":"10.2478\/v10048-011-0009-y"},{"issue":"3","key":"10.1016\/j.bspc.2021.102905_b0165","doi-asserted-by":"crossref","first-page":"740","DOI":"10.1016\/j.cap.2010.11.051","article-title":"Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions","volume":"11","author":"Kim","year":"2011","journal-title":"Curr. Appl Phys."},{"issue":"5","key":"10.1016\/j.bspc.2021.102905_b0170","first-page":"855","article-title":"A Novel connectionist system for unconstrained handwriting recognition, Pattern Analysis and Machine Intelligence","volume":"31","author":"Graves","year":"2009","journal-title":"IEEE Transactions on"},{"key":"10.1016\/j.bspc.2021.102905_b0175","series-title":"In Proc, Of 29th Annual IEEE International Conference on Engineering in Medicine and Biology Society","article-title":"Accelerometry based Classification of walking patterns using time-frequency analysis","author":"Wang","year":"2007"},{"issue":"6","key":"10.1016\/j.bspc.2021.102905_b0180","first-page":"930","article-title":"Improved computation for Levenberg\u2013Marquardt training. Neural Networks","volume":"21","author":"Wilamowski","year":"2010","journal-title":"IEEE Transactions on"},{"key":"10.1016\/j.bspc.2021.102905_b0185","article-title":"FPGA implementation of ANN training using levenberg and marquardt algorithms","author":"Cavusoglu","year":"2018","journal-title":"CTU FTS"},{"key":"10.1016\/j.bspc.2021.102905_b0190","doi-asserted-by":"crossref","DOI":"10.1186\/s12874-017-0332-6","article-title":"Time-dependent ROC curve analysis in medical research: current methods and applications","author":"Kamarudin","year":"2017","journal-title":"BMC Med. Res. Methodology"},{"key":"10.1016\/j.bspc.2021.102905_b0195","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.jpor.2019.04.003","article-title":"Validity of single-channel masseteric electromyography by using an ultraminiature wearable electromyographic device for diagnosis of sleep bruxism","volume":"64","author":"Maeda","year":"2020","journal-title":"Journal of Prosthodontic Research"},{"key":"10.1016\/j.bspc.2021.102905_b0200","article-title":"EMG-driven hand model based on the classification of individual finger movements","volume":"58","author":"Artega","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2021.102905_b0205","first-page":"49","article-title":"Predicting Student Academic Performance at Degree Level: A Case Study","author":"Asif","year":"2015","journal-title":"I.J. Intell. Syst. Appl."},{"key":"10.1016\/j.bspc.2021.102905_b0210","doi-asserted-by":"crossref","DOI":"10.3390\/computation7010012","article-title":"EMG feature Selection and Classification Using a Pbest-Guide Binary Particle Swarm Optimization","author":"Too","year":"2019","journal-title":"Computation"},{"key":"10.1016\/j.bspc.2021.102905_b0215","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1111\/j.1365-2842.2007.01781.x","article-title":"Effect of conditioning electrical stimuli on temporalis electromyographic activity during sleep","volume":"35","author":"Jadidi","year":"2007","journal-title":"J. Oral Rehabil."},{"key":"10.1016\/j.bspc.2021.102905_b0220","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1111\/j.1600-0722.2011.00822.x","article-title":"Assessment of sleep parameters during contingent electrical stimulation in subjects with jaw muscle activity during sleep:a polysomnographic study","volume":"119","author":"Jadidi","year":"2011","journal-title":"Eur. J. Oral Sci."},{"key":"10.1016\/j.bspc.2021.102905_b0225","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1111\/j.1365-2842.2010.02177.x","article-title":"Effects of different stimulus locations on inhibitory responses in human jawclosing muscles","volume":"38","author":"Jadidi","year":"2010","journal-title":"J. Oral Rehabil."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421005024?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421005024?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T00:58:38Z","timestamp":1716857918000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809421005024"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8]]},"references-count":45,"alternative-id":["S1746809421005024"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2021.102905","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2021,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Machine learning and regression analysis for diagnosis of bruxism by using EMG signals of jaw muscles","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2021.102905","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102905"}}