{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T01:05:46Z","timestamp":1720659946877},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1016\/j.bspc.2021.102734","type":"journal-article","created":{"date-parts":[[2021,5,12]],"date-time":"2021-05-12T21:37:16Z","timestamp":1620855436000},"page":"102734","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Attention graph convolutional nets for esophageal contraction pattern recognition in high-resolution manometries"],"prefix":"10.1016","volume":"68","author":[{"given":"Zheng","family":"Wang","sequence":"first","affiliation":[]},{"given":"Lu","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Yuzhuo","family":"Dai","sequence":"additional","affiliation":[]},{"given":"Fanggen","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Muzhou","family":"Hou","sequence":"additional","affiliation":[]},{"given":"Xiaowei","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2021.102734_bib0005","article-title":"Is barium esophagram enough? Comparison of esophageal motility found on barium esophagram to high resolution manometry","author":"Zambito","year":"2020","journal-title":"Am. J. Surg."},{"key":"10.1016\/j.bspc.2021.102734_bib0010","article-title":"Identification of different phenotypes of esophageal reflux hyper-sensitivity and implications for treatment","author":"Sawada","year":"2020","journal-title":"Clin. Gastroenterol. Hepatol."},{"issue":"12","key":"10.1016\/j.bspc.2021.102734_bib0015","doi-asserted-by":"crossref","first-page":"696","DOI":"10.1111\/1751-2980.12946","article-title":"Esophageal symptoms versus epigastric symptoms: relevance for diagnosis of gastroesophageal reflux disease","volume":"21","author":"Zhang","year":"2020","journal-title":"J. Dig. Dis."},{"issue":"1","key":"10.1016\/j.bspc.2021.102734_bib0020","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1007\/s00455-020-10095-1","article-title":"Relationship between tongue pressure and pharyngeal function assessed using high-resolution manometry in older dysphagia patients with sarcopenia: a pilot study","volume":"36","author":"Kunieda","year":"2021","journal-title":"Dysphagia"},{"issue":"2","key":"10.1016\/j.bspc.2021.102734_bib0025","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1097\/MCG.0000000000000078","article-title":"Assessment of upper esophageal sphincter function on high-resolution manometry: identification of predictors of globus symptoms","volume":"49","author":"Peng","year":"2015","journal-title":"J. Clin. Gastroenterol."},{"issue":"5","key":"10.1016\/j.bspc.2021.102734_bib0030","doi-asserted-by":"crossref","first-page":"G1033","DOI":"10.1152\/ajpgi.00444.2005","article-title":"Quantifying egj morphology and relaxation with high-resolution manometry: a study of 75 asymptomatic volunteers","volume":"290","author":"Pandolfino","year":"2006","journal-title":"Am. J. Physiol. Gastrointestinal Liver Physiol."},{"issue":"5","key":"10.1016\/j.bspc.2021.102734_bib0035","doi-asserted-by":"crossref","first-page":"627","DOI":"10.1097\/MCG.0b013e31815ea291","article-title":"Esophageal motility disorders in terms of pressure topography: the chicago classification","volume":"42","author":"Kahrilas","year":"2008","journal-title":"J. Clin. Gastroenterol."},{"issue":"1","key":"10.1016\/j.bspc.2021.102734_bib0040","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1097\/MCG.0000000000001205","article-title":"High-resolution manometry can characterize esophagogastric junction morphology and predict esophageal reflux burden","volume":"54","author":"Rengarajan","year":"2020","journal-title":"J. Clin. Gastroenterol."},{"issue":"4","key":"10.1016\/j.bspc.2021.102734_bib0045","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1007\/s00455-019-10068-z","article-title":"Elicitation of the swallowing reflex by esophageal stimulation in healthy subjects: an evaluation using high-resolution manometry","volume":"35","author":"Taniguchi","year":"2020","journal-title":"Dysphagia"},{"issue":"4","key":"10.1016\/j.bspc.2021.102734_bib0050","doi-asserted-by":"crossref","first-page":"G878","DOI":"10.1152\/ajpgi.00252.2007","article-title":"Impaired deglutitive egj relaxation in clinical esophageal manometry: a quantitative analysis of 400 patients and 75 controls","volume":"293","author":"Ghosh","year":"2007","journal-title":"Am. J. Physiol. Gastrointestinal Liver Physiol."},{"issue":"1","key":"10.1016\/j.bspc.2021.102734_bib0055","doi-asserted-by":"crossref","first-page":"6","DOI":"10.5056\/jnm15177","article-title":"Clinical application of esophageal high-resolution manometry in the diagnosis of esophageal motility disorders","volume":"22","author":"Van Hoeij","year":"2016","journal-title":"J. Neurogastroenterol. Motil."},{"key":"10.1016\/j.bspc.2021.102734_bib0060","first-page":"1","article-title":"Effect of bridge position swallow on esophageal motility in healthy individuals using high-resolution manometry","author":"Aoyama","year":"2020","journal-title":"Dysphagia"},{"issue":"2","key":"10.1016\/j.bspc.2021.102734_bib0065","doi-asserted-by":"crossref","first-page":"204","DOI":"10.5056\/jnm19135","article-title":"Role of rapid drink challenge during esophageal high-resolution manometry in predicting outcome of peroral endoscopic myotomy in patients with achalasia","volume":"26","author":"Foisy","year":"2020","journal-title":"J. Neurogastroenterol. Motil."},{"issue":"1","key":"10.1016\/j.bspc.2021.102734_bib0070","doi-asserted-by":"crossref","DOI":"10.1111\/nmo.13954","article-title":"Normative reference values for esophageal high-resolution manometry in healthy adults: a systematic review","volume":"33","author":"Alcala Gonzalez","year":"2021","journal-title":"Neurogastroenterol. Motil."},{"key":"10.1016\/j.bspc.2021.102734_bib0075","series-title":"Color Atlas of High Resolution Manometry","author":"Soffer","year":"2009"},{"issue":"5","key":"10.1016\/j.bspc.2021.102734_bib0080","doi-asserted-by":"crossref","first-page":"789","DOI":"10.1053\/j.gastro.2016.09.024","article-title":"How to effectively use high-resolution esophageal manometry","volume":"151","author":"Carlson","year":"2016","journal-title":"Gastroenterology"},{"key":"10.1016\/j.bspc.2021.102734_bib0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.102006","article-title":"A deep-learning-based unsupervised model on esophageal manometry using variational autoencoder","author":"Kou","year":"2021","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.bspc.2021.102734_bib0090","article-title":"Achalasia subtypes can be identified with functional luminal imaging probe (flip) panometry using a supervised machine learning process","author":"Carlson","year":"2020","journal-title":"Neurogastroenterol. Motil."},{"key":"10.1016\/j.bspc.2021.102734_bib0095","doi-asserted-by":"crossref","first-page":"626","DOI":"10.1016\/0016-5085(90)90281-5","article-title":"Manometry and radiology. Complementary studies in the assessment of esophageal motility disorders","volume":"98","author":"Hewson","year":"1990","journal-title":"Gastroenterology"},{"issue":"2","key":"10.1016\/j.bspc.2021.102734_bib0100","article-title":"Optimizing the high-resolution manometry (hrm) study protocol","volume":"27","author":"Gyawali","year":"2021","journal-title":"Neurogastroenterol. Motil."},{"key":"10.1016\/j.bspc.2021.102734_bib0105","article-title":"Clinical application of esophageal high-resolution manometry in the diagnosis of esophageal motility disorders","volume":"22","author":"van Hoeij","year":"2021","journal-title":"J. Neurogastroenterol. Motil."},{"key":"10.1016\/j.bspc.2021.102734_bib0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1097\/MOG.0000000000000369","article-title":"High-resolution esophageal manometry: interpretation in clinical practice","volume":"33","author":"Yadlapati","year":"2017","journal-title":"Curr. Opin. Gastroenterol."},{"issue":"8","key":"10.1016\/j.bspc.2021.102734_bib0115","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1007\/s11894-017-0576-7","article-title":"Chicago classification of esophageal motility disorders: lessons learned","volume":"19","author":"Rohof","year":"2017","journal-title":"Curr. Gastroenterol. Rep."},{"key":"10.1016\/j.bspc.2021.102734_bib0120","article-title":"The chicago classification of esophageal motility disorders, v3.0","volume":"27","author":"Kahrilas","year":"2021","journal-title":"Neurogastroenterol. Motil."},{"key":"10.1016\/j.bspc.2021.102734_bib0125","series-title":"Semi-supervised classification with graph convolutional networks","author":"Kipf","year":"2021"},{"key":"10.1016\/j.bspc.2021.102734_bib0130","first-page":"1","article-title":"Influence of acid swallows on the dynamics of the upper esophageal sphincter","author":"Miller","year":"2020","journal-title":"Dysphagia"},{"key":"10.1016\/j.bspc.2021.102734_bib0135","series-title":"Spectral Networks and Locally Connected Networks on Graphs","author":"Bruna","year":"2021"},{"key":"10.1016\/j.bspc.2021.102734_bib0140","series-title":"Proceedings of the 30th International Conference on Neural Information Processing Systems","article-title":"Convolutional neural networks on graphs with fast localized spectral filtering","author":"Defferrard","year":"2016"},{"key":"10.1016\/j.bspc.2021.102734_bib0145","series-title":"Learning Convolutional Neural Networks for Graphs","author":"Niepert","year":"2021"},{"key":"10.1016\/j.bspc.2021.102734_bib0150","series-title":"Graph Attention Networks","author":"Veli\u010dkovi\u0107","year":"2021"},{"key":"10.1016\/j.bspc.2021.102734_bib0155","article-title":"Mask r-cnn","author":"Kaiming","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.bspc.2021.102734_bib0160","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","article-title":"Faster r-cnn: towards real-time object detection with region proposal networks","volume":"39","author":"Ren","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.bspc.2021.102734_bib0165","first-page":"4974","article-title":"A simple neural network module for relational reasoning","author":"Santoro","year":"2017","journal-title":"NIPS17"},{"key":"10.1016\/j.bspc.2021.102734_bib0170","doi-asserted-by":"crossref","first-page":"2022","DOI":"10.1145\/3308558.3313562","article-title":"Heterogeneous graph attention network","author":"Wang","year":"2019","journal-title":"The World Wide Web Conference"},{"key":"10.1016\/j.bspc.2021.102734_bib0175","first-page":"6000","article-title":"Attention is all you need","author":"Vaswani","year":"2017","journal-title":"NIPS17"},{"key":"10.1016\/j.bspc.2021.102734_bib0180","article-title":"Neural machine translation by jointly learning to align and translate","author":"Bahdanau","year":"2015","journal-title":"International Conference on Learning Representations (ICLR)"},{"key":"10.1016\/j.bspc.2021.102734_bib0185","series-title":"Attentional Factorization Machines: Learning the Weight of Feature Interactions Via Attention Networks","author":"Xiao","year":"2021"},{"key":"10.1016\/j.bspc.2021.102734_bib0190","first-page":"2048","article-title":"Show, attend and tell: neural image caption generation with visual attention","author":"Xu","year":"2015","journal-title":"Comput. Sci."},{"key":"10.1016\/j.bspc.2021.102734_bib0195","series-title":"Multilingual Hierarchical Attention Networks for Document Classification","author":"Pappas","year":"2017"},{"key":"10.1016\/j.bspc.2021.102734_bib0200","article-title":"Effective approaches to attention-based neural machine translation","author":"Luong","year":"2021","journal-title":"Comput. Sci."},{"issue":"2","key":"10.1016\/j.bspc.2021.102734_bib0205","doi-asserted-by":"crossref","DOI":"10.1111\/nmo.13736","article-title":"Fragmented and failed swallows on esophageal high-resolution manometry associate with abnormal reflux burden better than weak swallows","volume":"32","author":"Rogers","year":"2020","journal-title":"Neurogastroenterol. Motil."},{"issue":"8","key":"10.1016\/j.bspc.2021.102734_bib0210","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1016\/j.patrec.2005.10.010","article-title":"An introduction to roc analysis","volume":"27","author":"Fawcett","year":"2006","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.bspc.2021.102734_bib0215","article-title":"R-jaunlab: automatic multi-class recognition of jaundice on photos of subjects with region annotation networks","volume":"9","author":"Wang","year":"2021","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.bspc.2021.102734_bib0220","doi-asserted-by":"crossref","first-page":"8759","DOI":"10.1109\/CVPR.2018.00913","article-title":"Path aggregation network for instance segmentation","author":"Liu","year":"2018","journal-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.bspc.2021.102734_bib0225","doi-asserted-by":"crossref","first-page":"2818","DOI":"10.1109\/CVPR.2016.308","article-title":"Rethinking the inception architecture for computer vision","author":"Szegedy","year":"2016","journal-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)"},{"key":"10.1016\/j.bspc.2021.102734_bib0230","series-title":"Very Deep Convolutional Networks for Large-scale Image Recognition","author":"Simonyan","year":"2021"},{"key":"10.1016\/j.bspc.2021.102734_bib0235","doi-asserted-by":"crossref","DOI":"10.1016\/S0016-5085(19)39466-1","article-title":"Tu1256cdeep learning for esophageal manometry? A proof of concept","volume":"156","author":"Huang","year":"2019","journal-title":"Gastroenterology"},{"key":"10.1016\/j.bspc.2021.102734_bib0240","doi-asserted-by":"crossref","first-page":"8759","DOI":"10.1109\/CVPR.2018.00913","article-title":"Path aggregation network for instance segmentation","author":"Liu","year":"2018","journal-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.bspc.2021.102734_bib0245","doi-asserted-by":"crossref","DOI":"10.1109\/CVPR42600.2020.01221","article-title":"Polarmask: single shot instance segmentation with polar representation","author":"Xie","year":"2020","journal-title":"2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421003311?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421003311?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T23:10:42Z","timestamp":1681600242000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809421003311"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":49,"alternative-id":["S1746809421003311"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2021.102734","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2021,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Attention graph convolutional nets for esophageal contraction pattern recognition in high-resolution manometries","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2021.102734","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102734"}}