{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:20:16Z","timestamp":1732040416302},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100013804","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013804","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1016\/j.bspc.2021.102587","type":"journal-article","created":{"date-parts":[[2021,4,15]],"date-time":"2021-04-15T12:56:53Z","timestamp":1618491413000},"page":"102587","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":33,"special_numbering":"C","title":["A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition"],"prefix":"10.1016","volume":"68","author":[{"given":"Pengna","family":"Wei","sequence":"first","affiliation":[]},{"given":"Jinhua","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Feifei","family":"Tian","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Hong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2021.102587_bib0005","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TNSRE.2016.2521160","article-title":"State of the art and future directions for lower limb robotic exoskeletons","volume":"25","author":"Young","year":"2017","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.bspc.2021.102587_bib0010","first-page":"978","article-title":"Classification of gait phases based on bilateral EMG data using support vector machines","author":"Ziegler","year":"2018","journal-title":"IEEE"},{"key":"10.1016\/j.bspc.2021.102587_bib0015","doi-asserted-by":"crossref","first-page":"40","DOI":"10.3390\/s16010066","article-title":"Gait partitioning methods: a systematic review","volume":"16","author":"Taborri","year":"2016","journal-title":"Sensors (Switzerland)"},{"key":"10.1016\/j.bspc.2021.102587_bib0020","doi-asserted-by":"crossref","DOI":"10.3390\/electronics8080894","article-title":"A deep learning approach to EMG-based classification of gait phases during level ground walking","volume":"8","author":"Morbidoni","year":"2019","journal-title":"Electron"},{"key":"10.1016\/j.bspc.2021.102587_bib0025","doi-asserted-by":"crossref","first-page":"2180","DOI":"10.1109\/TBME.2012.2198821","article-title":"Intention-based EMG control for powered exoskeletons","volume":"59","author":"Lenzi","year":"2012","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2021.102587_bib0030","first-page":"1","article-title":"Detecting voluntary gait initiation\/termination intention using EEG","author":"Choi","year":"2018","journal-title":"2018 6th Int. Conf. Brain-Computer Interface, BCI 2018. 2018-Janua"},{"key":"10.1016\/j.bspc.2021.102587_bib0035","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/ab9842","article-title":"Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network","volume":"17","author":"Tortora","year":"2020","journal-title":"J. Neural Eng."},{"key":"10.1016\/j.bspc.2021.102587_bib0040","doi-asserted-by":"crossref","DOI":"10.1186\/s10033-019-0389-8","article-title":"A review on lower limb rehabilitation exoskeleton robots","volume":"32","author":"Shi","year":"2019","journal-title":"Chinese J. Mech. Eng."},{"key":"10.1016\/j.bspc.2021.102587_bib0045","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.bspc.2018.08.030","article-title":"Walking gait event detection based on electromyography signals using artificial neural network","volume":"47","author":"Nazmi","year":"2019","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2021.102587_bib0050","article-title":"sEMG based gait phase recognition for children with spastic cerebral palsy","author":"na Wei","year":"2018","journal-title":"Ann. Biomed. Eng."},{"key":"10.1016\/j.bspc.2021.102587_bib0055","first-page":"971","article-title":"Performance evaluation of EEG\/EMG fusion methods for motion classification","author":"Tryon","year":"2019","journal-title":"2019 IEEE 16th Int. Conf. Rehabil. Robot."},{"key":"10.1016\/j.bspc.2021.102587_bib0060","first-page":"1","article-title":"Real-time decoding of EEG gait intention for controlling a lower-limb exoskeleton system","author":"Choi","year":"2019","journal-title":"7th Int. Winter Conf. Brain-Computer Interface, BCI 2019"},{"key":"10.1016\/j.bspc.2021.102587_bib0065","doi-asserted-by":"crossref","first-page":"4068","DOI":"10.1109\/ChiCC.2016.7553988","article-title":"Gait recognition based on EMG with different individuals and sample sizes","author":"Li","year":"2016","journal-title":"Chinese Control Conf. CCC. 2016-Augus"},{"key":"10.1016\/j.bspc.2021.102587_bib0070","first-page":"4369","article-title":"A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope","author":"Mannini","year":"2011","journal-title":"Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS."},{"key":"10.1016\/j.bspc.2021.102587_bib0075","doi-asserted-by":"crossref","first-page":"84070","DOI":"10.1109\/ACCESS.2020.2991812","article-title":"Real-Time EEG-EMG human-machine interface-based control system for a lower-limb exoskeleton","volume":"8","author":"Gordleeva","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2021.102587_bib0080","first-page":"143","article-title":"Robust control of hand prostheses from surface EMG Signal for transradial amputees","author":"Anika Nastarin","year":"2019","journal-title":"2019 5th Int. Conf. Adv. Electr. Eng."},{"key":"10.1016\/j.bspc.2021.102587_bib0085","doi-asserted-by":"crossref","first-page":"S509","DOI":"10.3233\/THC-174836","article-title":"Emotion recognition from multichannel EEG signals using K-nearest neighbor classification","volume":"26","author":"Li","year":"2018","journal-title":"Technol. Health Care"},{"key":"10.1016\/j.bspc.2021.102587_bib0090","first-page":"106","article-title":"Electromyogram signal based human emotion classification using KNN and LDA","author":"Murugappan","year":"2011","journal-title":"Proc. - 2011 IEEE Int. Conf. Syst. Eng. Technol. ICSET 2011"},{"key":"10.1016\/j.bspc.2021.102587_bib0095","first-page":"169","article-title":"Comparative analysis between SVM & KNN classifier for EMG signal classification on elementary time domain features","author":"Paul","year":"2017","journal-title":"4th IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2017. 2017-Janua"},{"key":"10.1016\/j.bspc.2021.102587_bib0100","article-title":"Feature extraction and classification for EMG signals using linear discriminant analysis","author":"Negi","year":"2016","journal-title":"Proc. - 2016 Int. Conf. Adv. Comput. Commun. Autom. (Fall), ICACCA 2016"},{"key":"10.1016\/j.bspc.2021.102587_bib0105","first-page":"4850","article-title":"A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand","author":"Zhang","year":"2014","journal-title":"Proc. IEEE Int. Conf. Robot. Autom."},{"key":"10.1016\/j.bspc.2021.102587_bib0110","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.1109\/TBME.2008.919734","article-title":"Support vector machine-based classification scheme for myoelectric control applied to upper limb","volume":"55","author":"Oskoei","year":"2008","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2021.102587_bib0115","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1016\/j.ijleo.2017.10.090","article-title":"Study on bruising degree classification of apples using hyperspectral imaging and GS-SVM","volume":"154","author":"Tan","year":"2018","journal-title":"Optik (Stuttg)"},{"key":"10.1016\/j.bspc.2021.102587_bib0120","first-page":"486","article-title":"GA-SVM optimization kernel applied to analog IC design automation","author":"Barros","year":"2006","journal-title":"Proc. IEEE Int. Conf. Electron. Circuits Syst."},{"key":"10.1016\/j.bspc.2021.102587_bib0125","first-page":"119","article-title":"SVM optimization based on PSO and AdaBoost to increasing accuracy of CKD diagnosis, lontar komput","volume":"10","author":"Indriani","year":"2019","journal-title":"J. Ilm. Teknol. Inf."},{"key":"10.1016\/j.bspc.2021.102587_bib0130","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1016\/j.neuroimage.2017.07.013","article-title":"Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking","volume":"159","author":"Artoni","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.bspc.2021.102587_bib0135","series-title":"Thorofare, Gait Analysis:Normal and Pathological Function","first-page":"524","author":"Jacquelin Perry","year":"1993"},{"key":"10.1016\/j.bspc.2021.102587_bib0140","doi-asserted-by":"crossref","first-page":"2443","DOI":"10.1113\/jphysiol.2012.227397","article-title":"The motor cortex drives the muscles during walking in human subjects","volume":"590","author":"Petersen","year":"2012","journal-title":"J. Physiol."},{"key":"10.1016\/j.bspc.2021.102587_bib0145","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1016\/j.neuroimage.2010.08.066","article-title":"Electrocortical activity is coupled to gait cycle phase during treadmill walking","volume":"54","author":"Gwin","year":"2011","journal-title":"Neuroimage"},{"key":"10.1016\/j.bspc.2021.102587_bib0150","doi-asserted-by":"crossref","DOI":"10.1097\/01241398-199211000-00023","article-title":"Gait analysis: normal and pathological function","volume":"12","author":"Perry","year":"1992","journal-title":"J. Pediatr. Orthop."},{"key":"10.1016\/j.bspc.2021.102587_bib0155","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1109\/PHT.2013.6461326","article-title":"Classification of gait phases from lower limb EMG: application to exoskeleton orthosis","author":"Joshi","year":"2013","journal-title":"2013 IEEE Point-of-Care Healthc. Technol."},{"key":"10.1016\/j.bspc.2021.102587_bib0160","doi-asserted-by":"crossref","first-page":"4832","DOI":"10.1016\/j.eswa.2013.02.023","article-title":"EMG feature evaluation for improving myoelectric pattern recognition robustness","volume":"40","author":"Phinyomark","year":"2013","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2021.102587_bib0165","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1109\/10.204774","article-title":"A new strategy for multifunction myoelectric control","volume":"40","author":"Hudgins","year":"1993","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2021.102587_bib0170","doi-asserted-by":"crossref","first-page":"7420","DOI":"10.1016\/j.eswa.2012.01.102","article-title":"Feature reduction and selection for EMG signal classification","volume":"39","author":"Phinyomark","year":"2012","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2021.102587_bib0175","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1109\/86.481972","article-title":"EMG feature evaluation for movement control of upper extremity prostheses","volume":"3","author":"Zardoshti-Kermani","year":"1995","journal-title":"IEEE Trans. Rehabil. Eng."},{"key":"10.1016\/j.bspc.2021.102587_bib0180","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1109\/NER.2009.5109299","article-title":"Classification of EEG signals using Dempster Shafer theory and a K-nearest neighbor classifier","author":"Yazdani","year":"2009","journal-title":"2009 4th Int. IEEE\/EMBS Conf. Neural Eng. NER\u2019 09"},{"key":"10.1016\/j.bspc.2021.102587_bib0185","doi-asserted-by":"crossref","DOI":"10.3389\/fnhum.2018.00312","article-title":"EEG-based BCI control schemes for lower-limb assistive-robots","volume":"12","author":"Tariq","year":"2018","journal-title":"Front. Hum. Neurosci."},{"key":"10.1016\/j.bspc.2021.102587_bib0190","series-title":"Investigating the Performance of Naive- Bayes Classifiers and K- Nearest Neighbor Classifiers","first-page":"1541","author":"Islam","year":"2008"},{"key":"10.1016\/j.bspc.2021.102587_bib0195","first-page":"1852","article-title":"A precise gait phase detection based on high-frequency vibration on lower limbs","author":"Kadoya","year":"2014","journal-title":"Proc. IEEE Int. Conf. Robot. Autom."},{"key":"10.1016\/j.bspc.2021.102587_bib0200","first-page":"28","article-title":"A parameter optimization method for an SVM based on improved grid search algorithm","volume":"39","author":"Wang","year":"2012","journal-title":"Appl. Sci. Technol."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421001841?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421001841?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T23:01:38Z","timestamp":1681599698000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809421001841"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":40,"alternative-id":["S1746809421001841"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2021.102587","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2021,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2021.102587","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102587"}}