{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T13:21:07Z","timestamp":1725024067050},"reference-count":60,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100008628","name":"Ministry of Electronics and Information technology","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100008628","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2021,4]]},"DOI":"10.1016\/j.bspc.2021.102406","type":"journal-article","created":{"date-parts":[[2021,1,14]],"date-time":"2021-01-14T20:42:05Z","timestamp":1610656925000},"page":"102406","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":36,"special_numbering":"C","title":["Human knee abnormality detection from imbalanced sEMG data"],"prefix":"10.1016","volume":"66","author":[{"given":"Ankit","family":"Vijayvargiya","sequence":"first","affiliation":[]},{"given":"Chandra","family":"Prakash","sequence":"additional","affiliation":[]},{"given":"Rajesh","family":"Kumar","sequence":"additional","affiliation":[]},{"given":"Sanjeev","family":"Bansal","sequence":"additional","affiliation":[]},{"given":"Jo\u00e3o Manuel","family":"R.S. Tavares","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2021.102406_bib0005","series-title":"Arthritis by the Numbers","author":"Foundation","year":"2017"},{"issue":"12","key":"10.1016\/j.bspc.2021.102406_bib0010","doi-asserted-by":"crossref","first-page":"2355","DOI":"10.1177\/0363546509339909","article-title":"The anatomy of the medial patellofemoral ligament","volume":"37","author":"Baldwin","year":"2009","journal-title":"Am. J. Sports Med."},{"key":"10.1016\/j.bspc.2021.102406_bib0015","first-page":"1","article-title":"Musculoskeletal conditions in the united states","volume":"22","author":"Praemer","year":"1976","journal-title":"Am. Acad. Orthop Surg."},{"key":"10.1016\/j.bspc.2021.102406_bib0020","series-title":"2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS)","first-page":"1","article-title":"Knee vibratography: arthritis diagnosis through non-invasive cloud based artificial intelligence","author":"Hemavathi","year":"2017"},{"issue":"5","key":"10.1016\/j.bspc.2021.102406_bib0025","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1136\/ard.62.5.450","article-title":"How do gps use x rays to manage chronic knee pain in the elderly?. a case study","volume":"62","author":"Bedson","year":"2003","journal-title":"Ann. Rheum. Dis."},{"key":"10.1016\/j.bspc.2021.102406_bib0030","series-title":"2013 IEEE Point-of-Care Healthcare Technologies (PHT)","first-page":"208","article-title":"Measurement of cartilage thickness for early detection of knee osteoarthritis (koa)","author":"Kubakaddi","year":"2013"},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0035","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10462-016-9514-6","article-title":"Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges","volume":"49","author":"Prakash","year":"2018","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.bspc.2021.102406_bib0040","first-page":"15","article-title":"Fall detecting using inertial and electromyographic sensors","author":"Yang","year":"2012","journal-title":"Proceedings of the 36th Annual Meeting of the American Society of Biomechanics, Gainsville, FL, USA"},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0045","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1109\/TITB.2012.2226905","article-title":"A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals","volume":"17","author":"Cheng","year":"2012","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.bspc.2021.102406_bib0050","series-title":"New Techniques in Surface Electromyography","author":"Merletti","year":"1989"},{"key":"10.1016\/j.bspc.2021.102406_bib0055","doi-asserted-by":"crossref","first-page":"101981","DOI":"10.1016\/j.bspc.2020.101981","article-title":"Are armband semg devices dense enough for long-term use?.-sensor placement shifts cause significant reduction in recognition accuracy","volume":"60","author":"Kanoga","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"issue":"8","key":"10.1016\/j.bspc.2021.102406_bib0060","doi-asserted-by":"crossref","first-page":"1082","DOI":"10.1109\/TKDE.2007.1042","article-title":"Sensor-based abnormal human-activity detection","volume":"20","author":"Yin","year":"2008","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.bspc.2021.102406_bib0065","series-title":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005","first-page":"375","article-title":"An emg-position controlled system for an active ankle-foot prosthesis: an initial experimental study","author":"Au","year":"2005"},{"issue":"2","key":"10.1016\/j.bspc.2021.102406_bib0070","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1109\/72.485678","article-title":"Genetics-based machine learning for the assessment of certain neuromuscular disorders","volume":"7","author":"Pattichis","year":"1996","journal-title":"IEEE Trans. Neural Netw."},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0075","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1179\/1743132810Y.0000000014","article-title":"Non-invasive physiological monitoring of exercise and fitness","volume":"33","author":"Burkow-Heikkinen","year":"2011","journal-title":"Neurol. Res."},{"key":"10.1016\/j.bspc.2021.102406_bib0080","series-title":"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)","first-page":"1","article-title":"Human activity recognition using accelerometer and gyroscope data from smartphones","author":"Shukla","year":"2020"},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0085","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1109\/10.204774","article-title":"A new strategy for multifunction myoelectric control","volume":"40","author":"Hudgins","year":"1993","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2021.102406_bib0090","doi-asserted-by":"crossref","first-page":"102051","DOI":"10.1016\/j.bspc.2020.102051","article-title":"Joint torque estimation for the human arm from semg using backpropagation neural networks and autoencoders","volume":"62","author":"Huang","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"issue":"3","key":"10.1016\/j.bspc.2021.102406_bib0095","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1556\/2060.103.2016.3.10","article-title":"Emg activity of upper limb on spinal cord injury individuals during whole-body vibration","volume":"103","author":"Da Silva","year":"2016","journal-title":"Physiol. Int. (Acta Physiol. Hung.)"},{"key":"10.1016\/j.bspc.2021.102406_bib0100","doi-asserted-by":"crossref","first-page":"3547","DOI":"10.1016\/j.proeng.2012.06.409","article-title":"Design and development of emg controlled prosthetics limb","volume":"38","author":"Sudarsan","year":"2012","journal-title":"Procedia Eng."},{"key":"10.1016\/j.bspc.2021.102406_bib0105","doi-asserted-by":"crossref","first-page":"101872","DOI":"10.1016\/j.bspc.2020.101872","article-title":"Surface emg signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition","volume":"58","author":"Tuncer","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2021.102406_bib0110","doi-asserted-by":"crossref","first-page":"31","DOI":"10.3389\/fnbot.2019.00031","article-title":"Svm-based classification of semg signals for upper-limb self-rehabilitation training","volume":"13","author":"Cai","year":"2019","journal-title":"Front Neurorobot."},{"issue":"4","key":"10.1016\/j.bspc.2021.102406_bib0115","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1007\/s13748-016-0094-0","article-title":"Learning from imbalanced data: open challenges and future directions","volume":"5","author":"Krawczyk","year":"2016","journal-title":"Prog. Artif. Intell."},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0120","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.jneumeth.2003.10.014","article-title":"A method for positioning electrodes during surface emg recordings in lower limb muscles","volume":"134","author":"Rainoldi","year":"2004","journal-title":"J. Neurosci. Methods"},{"issue":"4","key":"10.1016\/j.bspc.2021.102406_bib0125","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1016\/j.jbiomech.2009.10.014","article-title":"Reliability of lower limb electromyography during overground walking: a comparison of maximal-and sub-maximal normalisation techniques","volume":"43","author":"Murley","year":"2010","journal-title":"J. Biomech."},{"issue":"10","key":"10.1016\/j.bspc.2021.102406_bib0130","doi-asserted-by":"crossref","first-page":"2867","DOI":"10.1109\/TBME.2011.2161671","article-title":"Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion","volume":"58","author":"Huang","year":"2011","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0135","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/S0966-6362(02)00165-0","article-title":"Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke","volume":"18","author":"Mulroy","year":"2003","journal-title":"Gait Posture"},{"key":"10.1016\/j.bspc.2021.102406_bib0140","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1016\/j.bspc.2017.10.002","article-title":"Surface emg based continuous estimation of human lower limb joint angles by using deep belief networks","volume":"40","author":"Chen","year":"2018","journal-title":"Biomed. Signal Process. Control"},{"issue":"6","key":"10.1016\/j.bspc.2021.102406_bib0145","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1109\/51.982285","article-title":"Emg-based measures of fatigue during a repetitive squat exercise","volume":"20","author":"Bonato","year":"2001","journal-title":"IEEE Eng. Med. Biol. Mag."},{"key":"10.1016\/j.bspc.2021.102406_bib0150","series-title":"2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","first-page":"1","article-title":"Classification of myopathy and neuropathy emg signals using neural network","author":"Swaroop","year":"2017"},{"key":"10.1016\/j.bspc.2021.102406_bib0155","series-title":"2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","first-page":"5781","article-title":"Automatic recognition of parkinson's disease using surface electromyography during standardized gait tests","author":"Kugler","year":"2013"},{"issue":"8","key":"10.1016\/j.bspc.2021.102406_bib0160","doi-asserted-by":"crossref","first-page":"894","DOI":"10.3390\/electronics8080894","article-title":"A deep learning approach to emg-based classification of gait phases during level ground walking","volume":"8","author":"Morbidoni","year":"2019","journal-title":"Electronics"},{"key":"10.1016\/j.bspc.2021.102406_bib0165","series-title":"International Conference on Next Generation Computing Technologies","first-page":"651","article-title":"Vision-based gender recognition using hybrid background subtraction technique","author":"Takhar","year":"2017"},{"key":"10.1016\/j.bspc.2021.102406_bib0170","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/j.bspc.2017.12.004","article-title":"Classification of imbalanced ecg beats using re-sampling techniques and adaboost ensemble classifier","volume":"41","author":"Rajesh","year":"2018","journal-title":"Biomed. Signal Process. Control"},{"issue":"16","key":"10.1016\/j.bspc.2021.102406_bib0175","doi-asserted-by":"crossref","first-page":"12371","DOI":"10.1016\/j.eswa.2012.04.045","article-title":"Computational intelligence for microarray data and biomedical image analysis for the early diagnosis of breast cancer","volume":"39","author":"Nahar","year":"2012","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.bspc.2021.102406_bib0180","doi-asserted-by":"crossref","first-page":"356","DOI":"10.1016\/j.jbi.2008.09.001","article-title":"Countering imbalanced datasets to improve adverse drug event predictive models in labor and delivery","volume":"42","author":"Taft","year":"2009","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.bspc.2021.102406_bib0185","series-title":"Emg Dataset in Lower Limb Data Set, UCI Machine Learning Repository","author":"Sanchez","year":"2014"},{"issue":"9","key":"10.1016\/j.bspc.2021.102406_bib0190","doi-asserted-by":"crossref","first-page":"12431","DOI":"10.3390\/s130912431","article-title":"Surface electromyography signal processing and classification techniques","volume":"13","author":"Chowdhury","year":"2013","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2021.102406_bib0195","series-title":"2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","first-page":"1868","article-title":"A comparative study of wavelet denoising of surface electromyographic signals","author":"Jiang","year":"2007"},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0200","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.bspc.2006.03.003","article-title":"Emg signal filtering based on empirical mode decomposition","volume":"1","author":"Andrade","year":"2006","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2021.102406_bib0205","doi-asserted-by":"crossref","first-page":"205","DOI":"10.18100\/ijamec.270307","article-title":"Deep belief networks based brain activity classification using eeg from slow cortical potentials in stroke","volume":"4","author":"Altan","year":"2016","journal-title":"Int J. Appl. Math. Elect. Comput."},{"issue":"02","key":"10.1016\/j.bspc.2021.102406_bib0210","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1142\/S0219477511000466","article-title":"Wavelet-based denoising algorithm for robust emg pattern recognition","volume":"10","author":"Phinyomark","year":"2011","journal-title":"Fluct. Noise Lett."},{"issue":"2","key":"10.1016\/j.bspc.2021.102406_bib0215","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/99.388960","article-title":"An introduction to wavelets","volume":"2","author":"Graps","year":"1995","journal-title":"IEEE Comput. Sci. Eng."},{"key":"10.1016\/j.bspc.2021.102406_bib0220","doi-asserted-by":"crossref","DOI":"10.1155\/2015\/280251","article-title":"A new wavelet threshold determination method considering interscale correlation in signal denoising","author":"He","year":"2015","journal-title":"Math. Probl. Eng."},{"issue":"4","key":"10.1016\/j.bspc.2021.102406_bib0225","doi-asserted-by":"crossref","first-page":"6474","DOI":"10.3390\/s140406474","article-title":"Window size impact in human activity recognition","volume":"14","author":"Banos","year":"2014","journal-title":"Sensors"},{"issue":"3","key":"10.1016\/j.bspc.2021.102406_bib0230","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1109\/TNSRE.2018.2796070","article-title":"An ica-ebm-based semg classifier for recognizing lower limb movements in individuals with and without knee pathology","volume":"26","author":"Naik","year":"2018","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.bspc.2021.102406_bib0235","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"Smote: synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.bspc.2021.102406_bib0240","article-title":"Adaptive synthetic sampling approach for imbalanced learning. ieee international joint conference on neural networks","author":"He","year":"2008","journal-title":"2008 (IEEE World Congress On Computational Intelligence)"},{"key":"10.1016\/j.bspc.2021.102406_bib0245","article-title":"A novel ensemble method for imbalanced data learning: bagging of extrapolation-smote svm","author":"Wang","year":"2017","journal-title":"Comput. Intell. Neurosci."},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0250","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1007\/BF00116251","article-title":"Induction of decision trees","volume":"1","author":"Quinlan","year":"1986","journal-title":"Mach. Learn."},{"issue":"5","key":"10.1016\/j.bspc.2021.102406_bib0255","doi-asserted-by":"crossref","first-page":"534","DOI":"10.1002\/cyto.990080516","article-title":"Classification and regression trees, by leo breiman, jerome h. friedman, richard a. olshen, and charles j. stone. brooks\/cole publishing, monterey, 1984, 358 pages","volume":"8","author":"Moore","year":"1987","journal-title":"Cytometry"},{"issue":"2","key":"10.1016\/j.bspc.2021.102406_bib0260","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"key":"10.1016\/j.bspc.2021.102406_bib0265","series-title":"Advances in Neural Information Processing Systems","first-page":"512","article-title":"Boosting algorithms as gradient descent","author":"Mason","year":"2000"},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0270","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0275","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s10994-006-6226-1","article-title":"Extremely randomized trees","volume":"63","author":"Geurts","year":"2006","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.bspc.2021.102406_bib0280","first-page":"32","article-title":"Introduction to statistical learning theory and support vector machines","volume":"26","author":"Xuegong","year":"2000","journal-title":"Acta Automatica Sinica."},{"key":"10.1016\/j.bspc.2021.102406_bib0285","doi-asserted-by":"crossref","first-page":"8138","DOI":"10.1109\/ACCESS.2016.2619181","article-title":"Mlp neural network based gas classification system on zynq soc","volume":"4","author":"Zhai","year":"2016","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2021.102406_bib0290","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.bspc.2018.05.014","article-title":"Deep learning with 3d-second order difference plot on respiratory sounds","volume":"45","author":"Altan","year":"2018","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2021.102406_bib0295","first-page":"1137","article-title":"A study of cross-validation and bootstrap for accuracy estimation and model selection","author":"Kohavi","year":"1995","journal-title":"Ijcai, Vol. 14, Montreal, Canada"},{"issue":"8","key":"10.1016\/j.bspc.2021.102406_bib0300","doi-asserted-by":"crossref","first-page":"1304","DOI":"10.3390\/s16081304","article-title":"A review of classification techniques of emg signals during isotonic and isometric contractions","volume":"16","author":"Nazmi","year":"2016","journal-title":"Sensors"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S174680942100001X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S174680942100001X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T22:55:43Z","timestamp":1681599343000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S174680942100001X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4]]},"references-count":60,"alternative-id":["S174680942100001X"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2021.102406","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2021,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Human knee abnormality detection from imbalanced sEMG data","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2021.102406","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102406"}}