{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T05:25:51Z","timestamp":1726464351118},"reference-count":53,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2021,1]]},"DOI":"10.1016\/j.bspc.2020.102173","type":"journal-article","created":{"date-parts":[[2020,9,7]],"date-time":"2020-09-07T11:47:24Z","timestamp":1599479244000},"page":"102173","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["An automated snoring sound classification method based on local dual octal pattern and iterative hybrid feature selector"],"prefix":"10.1016","volume":"63","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5126-6445","authenticated-orcid":false,"given":"Turker","family":"Tuncer","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5257-7560","authenticated-orcid":false,"given":"Erhan","family":"Akbal","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9677-5684","authenticated-orcid":false,"given":"Sengul","family":"Dogan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2020.102173_bib0005","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.bspc.2018.07.013","article-title":"Characterisation of upper airway obstructions using wide-band snoring sounds","volume":"46","author":"Markandeya","year":"2018","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2020.102173_bib0010","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.smrv.2009.06.002","article-title":"The acoustics of snoring","volume":"14","author":"Pevernagie","year":"2010","journal-title":"Sleep Med. Rev."},{"key":"10.1016\/j.bspc.2020.102173_bib0015","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1111\/j.1749-4486.2006.01136.x","article-title":"Acoustic parameters of snoring sound to compare natural snores with snores during \u2018steady\u2010state\u2019propofol sedation","volume":"31","author":"Jones","year":"2006","journal-title":"Clin. Otolaryngol."},{"key":"10.1016\/j.bspc.2020.102173_bib0020","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/0013-4694(75)90127-3","article-title":"Snoring","volume":"39","author":"Lugaresi","year":"1975","journal-title":"Electroencephalogr. Clin. Neurophysiol."},{"key":"10.1016\/j.bspc.2020.102173_bib0025","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1046\/j.1365-2273.2002.00554.x","article-title":"Sound frequency analysis and the site of snoring in natural and induced sleep","volume":"27","author":"Agrawal","year":"2002","journal-title":"Clin. Otolaryngol. Allied Sci."},{"key":"10.1016\/j.bspc.2020.102173_bib0030","doi-asserted-by":"crossref","first-page":"2695","DOI":"10.1109\/ICSMC.2009.5346556","article-title":"Classification of non-speech human sounds: feature selection and snoring sound analysis","author":"Liao","year":"2009","journal-title":"2009 IEEE International Conference on Systems, Man and Cybernetics: IEEE"},{"key":"10.1016\/j.bspc.2020.102173_bib0035","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.sleep.2019.10.001","article-title":"Reduced sleep spindle activity in children with primary snoring","volume":"65","author":"Brockmann","year":"2020","journal-title":"Sleep Med."},{"key":"10.1016\/j.bspc.2020.102173_bib0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.envint.2020.105691","article-title":"Dampness and mold at home and at work and onset of insomnia symptoms, snoring and excessive daytime sleepiness","volume":"139","author":"Wang","year":"2020","journal-title":"Environ. Int."},{"key":"10.1016\/j.bspc.2020.102173_bib0045","doi-asserted-by":"crossref","DOI":"10.1016\/j.amjoto.2019.102283","article-title":"Dissociation between objectively quantified snoring and sleep quality","volume":"41","author":"Macarthur","year":"2020","journal-title":"Am. J. Otolaryngol."},{"key":"10.1016\/j.bspc.2020.102173_bib0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.otc.2020.02.004","article-title":"Oral appliances for snoring and obstructive sleep apnea","author":"Mickelson","year":"2020","journal-title":"Otolaryngol. Clin. North Am."},{"key":"10.1016\/j.bspc.2020.102173_bib0055","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1089\/fpsam.2019.29002.lin","article-title":"Improvement in snoring-related quality-of-Life outcomes after functional nasal surgery","volume":"22","author":"Yamasaki","year":"2020","journal-title":"Facial Plastic Surg. Aesthetic Med."},{"key":"10.1016\/j.bspc.2020.102173_bib0060","first-page":"141","article-title":"A classification method related to respiratory disorder events based on acoustical analysis of snoring","author":"Wang","year":"2020","journal-title":"Arch. Acoust."},{"key":"10.1016\/j.bspc.2020.102173_bib0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2020.103177","article-title":"Human activity classification based on sound recognition and residual convolutional neural network","volume":"114","author":"Jung","year":"2020","journal-title":"Autom. Constr."},{"key":"10.1016\/j.bspc.2020.102173_bib0070","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.compbiomed.2018.01.007","article-title":"Snoring classified: the Munich-Passau snore sound corpus","volume":"94","author":"Janott","year":"2018","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2020.102173_bib0075","doi-asserted-by":"crossref","first-page":"985","DOI":"10.1016\/j.medengphy.2010.06.013","article-title":"Automatic breath and snore sounds classification from tracheal and ambient sounds recordings","volume":"32","author":"Yadollahi","year":"2010","journal-title":"Med. Eng. Phys."},{"key":"10.1016\/j.bspc.2020.102173_bib0080","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.bspc.2015.12.009","article-title":"Automatic snore sound extraction from sleep sound recordings via auditory image modeling","volume":"27","author":"Nonaka","year":"2016","journal-title":"Biomed. Signal Process. Control"},{"year":"2020","series-title":"Snore Recognition Using a Reduced Set of Spectral","author":"Albornoz","key":"10.1016\/j.bspc.2020.102173_bib0085"},{"key":"10.1016\/j.bspc.2020.102173_bib0090","doi-asserted-by":"crossref","first-page":"3512","DOI":"10.21437\/Interspeech.2017-434","article-title":"Snore sound classification using image-based deep spectrum features","author":"Amiriparian","year":"2017","journal-title":"Interspeech"},{"key":"10.1016\/j.bspc.2020.102173_bib0095","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1109\/EMBC.2018.8512459","article-title":"Low level texture features for snore sound discrimination","author":"Demir","year":"2018","journal-title":"2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): IEEE"},{"key":"10.1016\/j.bspc.2020.102173_bib0100","doi-asserted-by":"crossref","first-page":"3507","DOI":"10.21437\/Interspeech.2017-173","article-title":"An \u2018end-to-evolution\u2019 hybrid approach for snore sound classification","author":"Freitag","year":"2017","journal-title":"Interspeech"},{"key":"10.1016\/j.bspc.2020.102173_bib0105","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.eswa.2019.01.020","article-title":"Classification of snoring sound based on a recurrent neural network","volume":"123","author":"Lim","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2020.102173_bib0110","first-page":"3502","article-title":"A dual source-filter model of snore audio for snorer group classification","author":"Rao","year":"2017","journal-title":"Interspeech"},{"key":"10.1016\/j.bspc.2020.102173_bib0115","first-page":"1","article-title":"Snore sounds excitation localization by using scattering transform and deep neural networks","author":"Vesperini","year":"2018","journal-title":"2018 International Joint Conference on Neural Networks (IJCNN): IEEE"},{"key":"10.1016\/j.bspc.2020.102173_bib0120","series-title":"Neural Approaches to Dynamics of Signal Exchanges","first-page":"35","article-title":"Convolutional recurrent neural networks and acoustic data augmentation for snore detection","author":"Vesperini","year":"2020"},{"key":"10.1016\/j.bspc.2020.102173_bib0125","doi-asserted-by":"crossref","first-page":"997","DOI":"10.23919\/EUSIPCO.2018.8553521","article-title":"A CNN-GRU approach to capture time-frequency pattern interdependence for snore sound classification","author":"Wang","year":"2018","journal-title":"2018 26th European Signal Processing Conference (EUSIPCO): IEEE"},{"key":"10.1016\/j.bspc.2020.102173_bib0130","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-030-16916-9","article-title":"Snore-gans: Improving automatic snore sound classification with synthesized data","author":"Zhang","year":"2019","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.bspc.2020.102173_bib0135","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1007\/s10439-019-02217-0","article-title":"A bag of wavelet features for snore sound classification","volume":"47","author":"Qian","year":"2019","journal-title":"Ann. Biomed. Eng."},{"key":"10.1016\/j.bspc.2020.102173_bib0140","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1038\/nbt1206-1565","article-title":"What is a support vector machine?","volume":"24","author":"Noble","year":"2006","journal-title":"Nat. Biotechnol."},{"key":"10.1016\/j.bspc.2020.102173_bib0145","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.patcog.2015.07.009","article-title":"Multilingual scene character recognition with co-occurrence of histogram of oriented gradients","volume":"51","author":"Tian","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.bspc.2020.102173_bib0150","doi-asserted-by":"crossref","first-page":"1597","DOI":"10.1109\/MWSCAS.2017.8053243","article-title":"Gate-variants of gated recurrent unit (GRU) neural networks","author":"Dey","year":"2017","journal-title":"2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS): IEEE"},{"key":"10.1016\/j.bspc.2020.102173_bib0155","first-page":"19","article-title":"MFCC and its applications in speaker recognition","volume":"1","author":"Tiwari","year":"2010","journal-title":"Int. J. Emerg. Technol. Learn."},{"key":"10.1016\/j.bspc.2020.102173_bib0160","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","article-title":"Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning","volume":"35","author":"Shin","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.bspc.2020.102173_bib0165","series-title":"International Conference on Advances in Pattern Recognition","first-page":"399","article-title":"A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification","author":"Ojala","year":"2001"},{"year":"2014","series-title":"A Recursive Recurrent Neural Network for Statistical Machine Translation","author":"Liu","key":"10.1016\/j.bspc.2020.102173_bib0170"},{"key":"10.1016\/j.bspc.2020.102173_bib0175","series-title":"Gaussian Mixture Models. Encyclopedia of Biometrics","first-page":"741","author":"Reynolds","year":"2009"},{"key":"10.1016\/j.bspc.2020.102173_bib0180","first-page":"2365","article-title":"Restructuring of deep neural network acoustic models with singular value decomposition","author":"Xue","year":"2013","journal-title":"Interspeech"},{"key":"10.1016\/j.bspc.2020.102173_bib0185","doi-asserted-by":"crossref","first-page":"4114","DOI":"10.1109\/TSP.2014.2326991","article-title":"Deep scattering spectrum","volume":"62","author":"And\u00e9n","year":"2014","journal-title":"Ieee Trans. Signal Process."},{"key":"10.1016\/j.bspc.2020.102173_bib0190","doi-asserted-by":"crossref","first-page":"2392","DOI":"10.1109\/ICASSP.2017.7952585","article-title":"Convolutional recurrent neural networks for music classification","author":"Choi","year":"2017","journal-title":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP): IEEE"},{"key":"10.1016\/j.bspc.2020.102173_bib0195","unstructured":"T.Y. ME, C.S. Devi, S. Sushmitha, P. Uvarani, S. Kaviya. DCT & DWT Based Secured Image Transmission Using Steganography."},{"key":"10.1016\/j.bspc.2020.102173_bib0200","doi-asserted-by":"crossref","first-page":"4168","DOI":"10.1016\/j.eswa.2009.11.006","article-title":"Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN)","volume":"37","author":"Saravanan","year":"2010","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2020.102173_bib0205","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1023\/A:1025667309714","article-title":"Theoretical and empirical analysis of ReliefF and RReliefF","volume":"53","author":"Robnik-\u0160ikonja","year":"2003","journal-title":"Mach. Learn."},{"key":"10.1016\/j.bspc.2020.102173_bib0210","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1109\/BRACIS.2013.10","article-title":"ReliefF for multi-label feature selection","author":"Spola\u00f4r","year":"2013","journal-title":"2013 Brazilian Conference on Intelligent Systems: IEEE"},{"key":"10.1016\/j.bspc.2020.102173_bib0215","doi-asserted-by":"crossref","first-page":"84532","DOI":"10.1109\/ACCESS.2020.2992641","article-title":"Novel multi center and threshold ternary pattern based method for disease detection method using voice","volume":"8","author":"Tuncer","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2020.102173_bib0220","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/S0167-4048(02)00514-X","article-title":"Use of k-nearest neighbor classifier for intrusion detection","volume":"21","author":"Liao","year":"2002","journal-title":"Comput. Secur."},{"key":"10.1016\/j.bspc.2020.102173_bib0225","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1016\/j.patrec.2006.08.016","article-title":"Simultaneous feature selection and feature weighting using Hybrid Tabu Search\/K-nearest neighbor classifier","volume":"28","author":"Tahir","year":"2007","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.bspc.2020.102173_bib0230","doi-asserted-by":"crossref","first-page":"2839","DOI":"10.1016\/j.patcog.2015.03.009","article-title":"Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation","volume":"48","author":"Wong","year":"2015","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.bspc.2020.102173_bib0235","doi-asserted-by":"crossref","first-page":"670","DOI":"10.1007\/s00106-019-0696-5","article-title":"VOTE versus ACLTE: comparison of two snoring noise classifications using machine learning methods","volume":"67","author":"Janott","year":"2019","journal-title":"HNO"},{"key":"10.1016\/j.bspc.2020.102173_bib0240","first-page":"1","article-title":"A digital video watermarking scheme based on 1D-DWT","author":"Tian","year":"2010","journal-title":"2010 International Conference on Biomedical Engineering and Computer Science: IEEE"},{"key":"10.1016\/j.bspc.2020.102173_bib0245","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.eswa.2018.06.031","article-title":"Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms","volume":"113","author":"Raghu","year":"2018","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2020.102173_bib0250","first-page":"161","article-title":"Neighborhood component feature selection for high-dimensional data","volume":"7","author":"Yang","year":"2012","journal-title":"JCP"},{"key":"10.1016\/j.bspc.2020.102173_bib0255","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.104923","article-title":"Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals","volume":"186","author":"Tuncer","year":"2019","journal-title":"Knowledge Based Syst."},{"key":"10.1016\/j.bspc.2020.102173_bib0260","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.bbe.2019.05.006","article-title":"Automated detection of Parkinson\u2019s disease using minimum average maximum tree and singular value decomposition method with vowels","volume":"40","author":"Tuncer","year":"2020","journal-title":"Biocybern. Biomed. Eng."},{"key":"10.1016\/j.bspc.2020.102173_bib0265","article-title":"Classifying skewed data: importance weighting to optimize average recall","author":"Rosenberg","year":"2012","journal-title":"Thirteenth Annual Conference of the International Speech Communication Association"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809420303128?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809420303128?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,10]],"date-time":"2020-11-10T03:41:31Z","timestamp":1604979691000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809420303128"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1]]},"references-count":53,"alternative-id":["S1746809420303128"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2020.102173","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2021,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An automated snoring sound classification method based on local dual octal pattern and iterative hybrid feature selector","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2020.102173","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102173"}}