{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T21:42:44Z","timestamp":1725399764849},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T00:00:00Z","timestamp":1585699200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61871371","81830056"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Key-Area Research and Development Program of GuangDong Province","award":["2018B010109009"]},{"DOI":"10.13039\/501100012245","name":"Science and Technology Planning Project of Guangdong Province","doi-asserted-by":"publisher","award":["2017B020227012"],"id":[{"id":"10.13039\/501100012245","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Basic Research Program of Shenzhen","award":["JCYJ20180507182400762"]},{"name":"Youth Innovation Promotion Association Program of Chinese Academy of Sciences","award":["2019351"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2020,4]]},"DOI":"10.1016\/j.bspc.2020.101869","type":"journal-article","created":{"date-parts":[[2020,2,13]],"date-time":"2020-02-13T18:27:18Z","timestamp":1581618438000},"page":"101869","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":38,"special_numbering":"C","title":["Lymph-vascular space invasion prediction in cervical cancer: Exploring radiomics and deep learning multilevel features of tumor and peritumor tissue on multiparametric MRI"],"prefix":"10.1016","volume":"58","author":[{"given":"Wenqing","family":"Hua","sequence":"first","affiliation":[]},{"given":"Taohui","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Xiran","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Zaiyi","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Meiyun","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hairong","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Shanshan","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2020.101869_bib0005","doi-asserted-by":"crossref","first-page":"394","DOI":"10.3322\/caac.21492","article-title":"Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","volume":"68","author":"Bray","year":"2018","journal-title":"CA-Cancer J. Clin."},{"key":"10.1016\/j.bspc.2020.101869_bib0010","doi-asserted-by":"crossref","first-page":"1883","DOI":"10.1126\/science.1071420","article-title":"Lymphatic metastasis in the absence of functional intratumor lymphatics","volume":"296","author":"Padera","year":"2002","journal-title":"Science"},{"key":"10.1016\/j.bspc.2020.101869_bib0015","first-page":"2578","article-title":"A multivariate analysis of blood vessel and lymph vessel invasion as predictors of ovarian and lymph node metastases in patients with cervical carcinoma","volume":"88","author":"Sakuragi","year":"2000","journal-title":"Cancer-Am. Cancer Soc."},{"key":"10.1016\/j.bspc.2020.101869_bib0020","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1200\/JCO.2008.17.2361","article-title":"Lymphovascular invasion predicts clinical outcomes in patients with node-negative upper tract urothelial carcinoma","volume":"27","author":"Kikuchi","year":"2009","journal-title":"J. Clin. Oncol."},{"key":"10.1016\/j.bspc.2020.101869_bib0025","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1016\/j.ygyno.2005.08.019","article-title":"Influence of quantity of lymph vascular space invasion on time to recurrence in women with early-stage squamous cancer of the cervix","volume":"100","author":"Chernofsky","year":"2006","journal-title":"Gynecol. Oncol."},{"key":"10.1016\/j.bspc.2020.101869_bib0030","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1097\/IGC.0000000000000604","article-title":"Risk of parametrial spread in small stage I cervical carcinoma: pathology review of 223 cases with a tumor diameter of 20 mm or less","volume":"26","author":"Vranes","year":"2016","journal-title":"Int. J. Gynecol. Cancer"},{"key":"10.1016\/j.bspc.2020.101869_bib0035","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1002\/ijc.2910490210","article-title":"Incidence and prognostic significance of vascular invasion in 529 gastric-cancer patients","volume":"49","author":"Gabbert","year":"1991","journal-title":"Int. J. Cancer"},{"key":"10.1016\/j.bspc.2020.101869_bib0040","doi-asserted-by":"crossref","first-page":"1058","DOI":"10.1007\/s00330-007-0843-3","article-title":"Diffusion-weighted MRI in cervical cancer","volume":"18","author":"McVeigh","year":"2008","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.bspc.2020.101869_bib0045","doi-asserted-by":"crossref","first-page":"901","DOI":"10.1016\/j.ijrobp.2005.02.040","article-title":"Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer","volume":"62","author":"Kirisits","year":"2005","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.bspc.2020.101869_bib0050","doi-asserted-by":"crossref","first-page":"1102","DOI":"10.1007\/s00330-010-1998-x","article-title":"Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology","volume":"21","author":"Balleyguier","year":"2011","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.bspc.2020.101869_bib0055","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1148\/radiol.2303030157","article-title":"Necrosis in metastatic neck nodes: diagnostic accuracy of CT, MR imaging, and US","volume":"230","author":"King","year":"2004","journal-title":"Radiology"},{"key":"10.1016\/j.bspc.2020.101869_bib0060","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/j.ejca.2011.11.036","article-title":"Radiomics: extracting more information from medical images using advanced feature analysis","volume":"48","author":"Lambin","year":"2012","journal-title":"Eur. J. Cancer"},{"key":"10.1016\/j.bspc.2020.101869_bib0065","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1148\/radiol.2015151169","article-title":"Images are more than pictures, they are data","volume":"278","author":"Gillies","year":"2015","journal-title":"Radiology"},{"key":"10.1016\/j.bspc.2020.101869_bib0070","doi-asserted-by":"crossref","first-page":"R150","DOI":"10.1088\/0031-9155\/61\/13\/R150","article-title":"Applications and limitations of radiomics","volume":"61","author":"Yip","year":"2016","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.bspc.2020.101869_bib0075","doi-asserted-by":"crossref","first-page":"10353","DOI":"10.1038\/s41598-017-10649-8","article-title":"A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme","volume":"7","author":"Lao","year":"2017","journal-title":"Sci Rep-UK"},{"key":"10.1016\/j.bspc.2020.101869_bib0080","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.bspc.2020.101869_bib0085","series-title":"Visualizing and Understanding Convolutional Networks. in: European Conference on Computer Vision","first-page":"818","author":"Zeiler","year":"2014"},{"key":"10.1016\/j.bspc.2020.101869_bib0090","article-title":"MRI based radiomics approach with deep learning for Prediction of vessel invasion in early-stage cervical cancer","author":"Jiang","year":"2019","journal-title":"IEEEACM Trans. Comput. Biol. Bioinform."},{"key":"10.1016\/j.bspc.2020.101869_bib0095","series-title":"Combining Deep Neural Network and Traditional Image Features to Improve Survival Prediction Accuracy for Lung Cancer Patients From Diagnostic CT. in: IEEE International Conference on Systems, Man, and Cybernetics","author":"Paul","year":"2016"},{"key":"10.1016\/j.bspc.2020.101869_bib0100","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.inffus.2017.10.005","article-title":"Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT","volume":"42","author":"Xie","year":"2018","journal-title":"Fusion"},{"key":"10.1016\/j.bspc.2020.101869_bib0105","doi-asserted-by":"crossref","first-page":"1521","DOI":"10.1109\/JBHI.2017.2775662","article-title":"Classification of medical images in the biomedical literature by jointly using deep and handcrafted visual features","volume":"22","author":"Zhang","year":"2018","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.bspc.2020.101869_bib0110","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1148\/radiol.2018180910","article-title":"Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas","volume":"290","author":"Beig","year":"2018","journal-title":"Radiology"},{"key":"10.1016\/j.bspc.2020.101869_bib0115","doi-asserted-by":"crossref","first-page":"1420","DOI":"10.1002\/jmri.26531","article-title":"MR\u2010based radiomics nomogram of cervical Cancer in prediction of the lymph\u2010vascular space invasion preoperatively","volume":"49","author":"Li","year":"2019","journal-title":"J. Magn. Reson. Imaging"},{"key":"10.1016\/j.bspc.2020.101869_bib0120","doi-asserted-by":"crossref","first-page":"1141","DOI":"10.1002\/jmri.26301","article-title":"Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma","volume":"49","author":"Wu","year":"2019","journal-title":"J. Magn. Reson. Imaging"},{"key":"10.1016\/j.bspc.2020.101869_bib0125","doi-asserted-by":"crossref","first-page":"1116","DOI":"10.1016\/j.neuroimage.2006.01.015","article-title":"User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability","volume":"31","author":"Yushkevich","year":"2006","journal-title":"Neuroimage"},{"key":"10.1016\/j.bspc.2020.101869_bib0130","doi-asserted-by":"crossref","first-page":"e104","DOI":"10.1158\/0008-5472.CAN-17-0339","article-title":"Computational radiomics system to decode the radiographic phenotype","volume":"77","author":"Van Griethuysen","year":"2017","journal-title":"Cancer Res."},{"key":"10.1016\/j.bspc.2020.101869_bib0135","series-title":"Very Deep Convolutional Networks for Large-scale Image Recognition. Eprint arXiv:14091556","author":"Simonyan","year":"2014"},{"key":"10.1016\/j.bspc.2020.101869_bib0140","unstructured":"Chollet F. Keras, 2015. 2017."},{"key":"10.1016\/j.bspc.2020.101869_bib0145","first-page":"1157","article-title":"An introduction to variable and feature selection","volume":"3","author":"Guyon","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.bspc.2020.101869_bib0150","doi-asserted-by":"crossref","first-page":"4625","DOI":"10.1016\/j.ins.2010.05.037","article-title":"Chinnam R B. mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification","volume":"181","author":"Unler","year":"2011","journal-title":"Inform Sci."},{"key":"10.1016\/j.bspc.2020.101869_bib0155","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.bspc.2020.101869_bib0160","doi-asserted-by":"crossref","first-page":"2729","DOI":"10.1158\/0008-5472.CAN-06-4102","article-title":"Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model","volume":"67","author":"Jain","year":"2007","journal-title":"Cancer Res."},{"key":"10.1016\/j.bspc.2020.101869_bib0165","doi-asserted-by":"crossref","first-page":"1935","DOI":"10.1109\/TBME.2018.2844188","article-title":"A radiomics approach with CNN for shear-wave elastography breast tumor classification","author":"Zhou","year":"2018","journal-title":"IEEE Trans. Biomed. Eng."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809420300252?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809420300252?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,2,9]],"date-time":"2021-02-09T20:32:52Z","timestamp":1612902772000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809420300252"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,4]]},"references-count":33,"alternative-id":["S1746809420300252"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2020.101869","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2020,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Lymph-vascular space invasion prediction in cervical cancer: Exploring radiomics and deep learning multilevel features of tumor and peritumor tissue on multiparametric MRI","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2020.101869","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101869"}}