{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,2]],"date-time":"2024-08-02T12:37:15Z","timestamp":1722602235601},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,3,1]],"date-time":"2020-03-01T00:00:00Z","timestamp":1583020800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000871","name":"Mayo Clinic","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000871","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["R01-NS063039","R01-NS078136","R01 NS092882-03","UH2\/UH3-NS95495"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010170","name":"Epilepsy Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100010170","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007655","name":"Czech Technical University in Prague","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100007655","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2020,3]]},"DOI":"10.1016\/j.bspc.2019.101743","type":"journal-article","created":{"date-parts":[[2019,11,14]],"date-time":"2019-11-14T23:27:36Z","timestamp":1573774056000},"page":"101743","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"special_numbering":"C","title":["Semi-supervised training data selection improves seizure forecasting in canines with epilepsy"],"prefix":"10.1016","volume":"57","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2511-1458","authenticated-orcid":false,"given":"Mona","family":"Nasseri","sequence":"first","affiliation":[]},{"given":"Vaclav","family":"Kremen","sequence":"additional","affiliation":[]},{"given":"Petr","family":"Nejedly","sequence":"additional","affiliation":[]},{"given":"Inyong","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Su-Youne","family":"Chang","sequence":"additional","affiliation":[]},{"given":"Hang Joon","family":"Jo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1952-9839","authenticated-orcid":false,"given":"Hari","family":"Guragain","sequence":"additional","affiliation":[]},{"given":"Nathaniel","family":"Nelson","sequence":"additional","affiliation":[]},{"given":"Edward","family":"Patterson","sequence":"additional","affiliation":[]},{"given":"Beverly K.","family":"Sturges","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6085-9277","authenticated-orcid":false,"given":"Chelsea M.","family":"Crowe","sequence":"additional","affiliation":[]},{"given":"Tim","family":"Denison","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2392-8608","authenticated-orcid":false,"given":"Benjamin H.","family":"Brinkmann","sequence":"additional","affiliation":[]},{"given":"Gregory A.","family":"Worrell","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2019.101743_bib0005","first-page":"2619","article-title":"Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG","volume":"141","author":"Kuhlmann","year":"2018","journal-title":"Brain"},{"key":"10.1016\/j.bspc.2019.101743_bib0010","doi-asserted-by":"crossref","first-page":"1713","DOI":"10.1093\/brain\/aww045","article-title":"Crowdsourcing reproducible seizure forecasting in human and canine epilepsy","volume":"139","author":"Brinkmann","year":"2016","journal-title":"Brain"},{"key":"10.1016\/j.bspc.2019.101743_bib0015","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1016\/j.yebeh.2010.05.008","article-title":"Views of patients with epilepsy on seizure prediction devices","volume":"18","author":"Schulze-Bonhage","year":"2010","journal-title":"Epilepsy Behav."},{"key":"10.1016\/j.bspc.2019.101743_bib0020","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1016\/S1474-4422(13)70092-9","article-title":"Seizure prediction and documentation\u2014two important problems","volume":"12","author":"Elger","year":"2013","journal-title":"Lancet Neurol."},{"key":"10.1016\/j.bspc.2019.101743_bib0025","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1016\/S1474-4422(13)70075-9","article-title":"Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study","volume":"12","author":"Cook","year":"2013","journal-title":"Lancet Neurol."},{"key":"10.1016\/j.bspc.2019.101743_bib0030","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.eplepsyres.2011.05.011","article-title":"A novel implanted device to wirelessly record and analyze continuous intracranial canine EEG","volume":"96","author":"Davis","year":"2011","journal-title":"Epilepsy Res."},{"key":"10.1016\/j.bspc.2019.101743_bib0035","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0081920","article-title":"Forecasting seizures in dogs with naturally occurring epilepsy","volume":"9","author":"Howbert","year":"2014","journal-title":"PLoS One"},{"issue":"6","key":"10.1016\/j.bspc.2019.101743_bib0040","doi-asserted-by":"crossref","first-page":"1230","DOI":"10.1109\/TBCAS.2018.2880148","article-title":"A chronically-implantable neural coprocessor for investigating the treatment of neurological disorders","volume":"12","author":"Stanslaski","year":"2018","journal-title":"IEEE Trans. Biomed. Circuits Syst."},{"key":"10.1016\/j.bspc.2019.101743_bib0045","series-title":"Continuous Active Probing and Modulation of Neural Networks With a Wireless Implantable System, Biomedical Circuits and Systems Conference (BioCAS), 2017 IEEE","first-page":"1","author":"Kremen","year":"2017"},{"key":"10.1016\/j.bspc.2019.101743_bib0050","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.yebeh.2012.02.007","article-title":"Clinical features of the pre-ictal state: mood changes and premonitory symptoms","volume":"23","author":"Haut","year":"2012","journal-title":"Epilepsy Behav."},{"key":"10.1016\/j.bspc.2019.101743_bib0055","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.eplepsyres.2011.07.012","article-title":"What is the present-day EEG evidence for a preictal state?","volume":"97","author":"Stacey","year":"2011","journal-title":"Epilepsy Res."},{"key":"10.1016\/j.bspc.2019.101743_bib0060","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/S0920-1211(00)00157-1","article-title":"Circadian rhythms: interactions with seizures and epilepsy","volume":"42","author":"Quigg","year":"2000","journal-title":"Epilepsy Res."},{"key":"10.1016\/j.bspc.2019.101743_bib0065","doi-asserted-by":"crossref","DOI":"10.1109\/JTEHM.2018.2869398","article-title":"Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system","volume":"6","author":"Kremen","year":"2018","journal-title":"IEEE J. Transl. Eng. Health Med."},{"key":"10.1016\/j.bspc.2019.101743_bib0070","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1016\/j.yebeh.2015.03.010","article-title":"On the proper selection of preictal period for seizure prediction","volume":"46","author":"Bandarabadi","year":"2015","journal-title":"Epilepsy Behav."},{"key":"10.1016\/j.bspc.2019.101743_bib0075","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0133900","article-title":"Forecasting seizures using intracranial EEG measures and SVM in naturally occurring canine epilepsy","volume":"10","author":"Brinkmann","year":"2015","journal-title":"PLoS One"},{"key":"10.1016\/j.bspc.2019.101743_bib0080","doi-asserted-by":"crossref","DOI":"10.1142\/S0129065716500465","article-title":"Seizure forecasting and the preictal state in canine epilepsy","volume":"27","author":"Varatharajah","year":"2017","journal-title":"Int. J. Neural Syst."},{"key":"10.1016\/j.bspc.2019.101743_bib0085","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.bspc.2017.02.001","article-title":"Towards accurate prediction of epileptic seizures: a review","volume":"34","author":"Assi","year":"2017","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2019.101743_bib0090","doi-asserted-by":"crossref","first-page":"2169","DOI":"10.1093\/brain\/awx173","article-title":"The circadian profile of epilepsy improves seizure forecasting","volume":"140","author":"Karoly","year":"2017","journal-title":"Brain"},{"key":"10.1016\/j.bspc.2019.101743_bib0095","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1109\/TBME.2017.2700086","article-title":"Towards improved design and evaluation of epileptic seizure predictors","volume":"65","author":"Korshunova","year":"2018","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2019.101743_bib0100","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.ebiom.2017.11.032","article-title":"Epileptic seizure prediction using big data and deep learning: toward a mobile system","volume":"27","author":"Kiral-Kornek","year":"2018","journal-title":"EBioMedicine"},{"key":"10.1016\/j.bspc.2019.101743_bib0105","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.jneumeth.2009.03.022","article-title":"Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data","volume":"180","author":"Brinkmann","year":"2009","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.bspc.2019.101743_bib0110","doi-asserted-by":"crossref","first-page":"1949","DOI":"10.1111\/epi.13591","article-title":"Temporal behavior of seizures and interictal bursts in prolonged intracranial recordings from epileptic canines","volume":"57","author":"Ung","year":"2016","journal-title":"Epilepsia"},{"key":"10.1016\/j.bspc.2019.101743_bib0115","doi-asserted-by":"crossref","first-page":"1313","DOI":"10.1212\/01.wnl.0000180685.84547.7f","article-title":"Identifying seizure clusters in patients with epilepsy","volume":"65","author":"Haut","year":"2005","journal-title":"Neurology"},{"key":"10.1016\/j.bspc.2019.101743_bib0120","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1111\/epi.13636","article-title":"Bursts of seizures in long\u2010term recordings of human focal epilepsy","volume":"58","author":"Karoly","year":"2017","journal-title":"Epilepsia"},{"key":"10.1016\/j.bspc.2019.101743_bib0125","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.artmed.2008.07.005","article-title":"Discrimination ability of individual measures used in sleep stages classification","volume":"44","author":"Susmakova","year":"2008","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.bspc.2019.101743_bib0130","doi-asserted-by":"crossref","first-page":"944","DOI":"10.1109\/TPAMI.2003.1217600","article-title":"A new cluster isolation criterion based on dissimilarity increments","volume":"25","author":"Fred","year":"2003","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.bspc.2019.101743_bib0135","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aa7f40","article-title":"Intracranial EEG fluctuates over months after implanting electrodes in human brain","volume":"14","author":"Ung","year":"2017","journal-title":"J. Neural Eng."},{"key":"10.1016\/j.bspc.2019.101743_bib0140","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1088\/1741-2560\/5\/4\/004","article-title":"The statistics of a practical seizure warning system","volume":"5","author":"Snyder","year":"2008","journal-title":"J. Neural Eng."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809419303246?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809419303246?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,3,20]],"date-time":"2020-03-20T16:51:38Z","timestamp":1584723098000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809419303246"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,3]]},"references-count":28,"alternative-id":["S1746809419303246"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2019.101743","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2020,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Semi-supervised training data selection improves seizure forecasting in canines with epilepsy","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2019.101743","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101743"}}