{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T23:12:46Z","timestamp":1726441966603},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.bspc.2017.05.008","type":"journal-article","created":{"date-parts":[[2017,6,3]],"date-time":"2017-06-03T20:09:43Z","timestamp":1496520583000},"page":"108-118","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":50,"special_numbering":"C","title":["Stockwell transform for epileptic seizure detection from EEG signals"],"prefix":"10.1016","volume":"38","author":[{"given":"Hashem","family":"Kalbkhani","sequence":"first","affiliation":[]},{"given":"Mahrokh G.","family":"Shayesteh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2017.05.008_bib0005","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.bspc.2014.03.007","article-title":"Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM","volume":"13","author":"Fu","year":"2014","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2017.05.008_bib0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.bspc.2013.08.006","article-title":"Classification of ictal and seizure-free EEG signals using fractional linear prediction","volume":"9","author":"Joshi","year":"2014","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2017.05.008_bib0015","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.neucom.2014.05.044","article-title":"Epileptic seizure detection by analyzing EEG signals using different transformation techniques","volume":"145","author":"Parvez","year":"2014","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.bspc.2017.05.008_bib0020","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1111\/epi.12550","article-title":"ILAE official report: a practical clinical definition of epilepsy","volume":"55","author":"Fisher","year":"2014","journal-title":"Epilepsia"},{"key":"10.1016\/j.bspc.2017.05.008_bib0025","series-title":"2007 International Conference on Information Acquisition","first-page":"195","article-title":"Brain activity investigation by EEG processing: wavelet analysis, kurtosis and Renyi's entropy for artifact detection","author":"Inuso","year":"2007"},{"issue":"3","key":"10.1016\/j.bspc.2017.05.008_bib0030","doi-asserted-by":"crossref","first-page":"572","DOI":"10.1109\/JBHI.2013.2255132","article-title":"A new framework based on recurrence quantification analysis for epileptic seizure detection","volume":"17","author":"Niknazar","year":"2013","journal-title":"IEEE J. Biomed. Health Inf."},{"issue":"5","key":"10.1016\/j.bspc.2017.05.008_bib0035","doi-asserted-by":"crossref","first-page":"2391","DOI":"10.1016\/j.eswa.2013.09.037","article-title":"Automatic EEG seizure detection using dual-tree complex wavelet-fourier features","volume":"41","author":"Chen","year":"2014","journal-title":"Expert Syst. Appl."},{"issue":"9","key":"10.1016\/j.bspc.2017.05.008_bib0040","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1049\/iet-spr.2011.0338","article-title":"Automatic feature extraction using generalised autoregressive conditional heteroscedasticity model: an application to electroencephalogram classification","volume":"6","author":"Mihandoost","year":"2012","journal-title":"IET Signal Proc."},{"key":"10.1016\/j.bspc.2017.05.008_bib0045","series-title":"2014 IEEE International Conference on Communications (ICC)","first-page":"3529","article-title":"Epileptic seizure detection from EEG signal using discrete wavelet transform and ant colony classifier","author":"Salem","year":"2014"},{"issue":"10","key":"10.1016\/j.bspc.2017.05.008_bib0050","doi-asserted-by":"crossref","first-page":"9072","DOI":"10.1016\/j.eswa.2012.02.040","article-title":"Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework","volume":"39","author":"Acharya","year":"2012","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2017.05.008_bib0055","series-title":"Cibec 2008","first-page":"1","article-title":"Epileptic seizure detection using AR model on EEG signals, in Biomedical engineering conference, 2008","author":"Mousavi","year":"2008"},{"issue":"4","key":"10.1016\/j.bspc.2017.05.008_bib0060","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.yebeh.2012.05.009","article-title":"Epileptic seizure detection with linear and nonlinear features","volume":"24","author":"Yuan","year":"2012","journal-title":"Epilepsy Behav."},{"issue":"2","key":"10.1016\/j.bspc.2017.05.008_bib0065","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.jneumeth.2012.07.003","article-title":"Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine","volume":"210","author":"Song","year":"2012","journal-title":"J. Neurosci. Methods"},{"issue":"3","key":"10.1016\/j.bspc.2017.05.008_bib0070","doi-asserted-by":"crossref","first-page":"1106","DOI":"10.1016\/j.eswa.2014.08.030","article-title":"Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions","volume":"42","author":"Sharma","year":"2015","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2017.05.008_bib0075","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/j.bspc.2015.01.002","article-title":"Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals","volume":"18","author":"Fu","year":"2015","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2017.05.008_bib0080","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.bspc.2014.08.014","article-title":"Classification of seizure and seizure-free EEG signals using local binary patterns","volume":"15","author":"Kumar","year":"2015","journal-title":"Biomed. Signal Process. Control"},{"issue":"4","key":"10.1016\/j.bspc.2017.05.008_bib0085","doi-asserted-by":"crossref","first-page":"998","DOI":"10.1109\/78.492555","article-title":"Localization of the complex spectrum: the S transform","volume":"44","author":"Stockwell","year":"1996","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.bspc.2017.05.008_bib0090","series-title":"Systems in Medicine and Biology (ICSMB), 2010","first-page":"113","article-title":"A new technique for removal of ocular artifacts from EEG signals using S-transform","author":"Senapati","year":"2010"},{"key":"10.1016\/j.bspc.2017.05.008_bib0095","series-title":"2015 Annual IEEE India Conference (INDICON)","first-page":"1","article-title":"Ocular artifact removal from EEG signals using discrete orthonormal stockwell transform","author":"Upadhyay","year":"2015"},{"key":"10.1016\/j.bspc.2017.05.008_bib0100","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.yebeh.2015.07.043","article-title":"Seizure detection approach using S-transform and singular value decomposition","volume":"52","author":"Xia","year":"2015","journal-title":"Epilepsy Behav."},{"key":"10.1016\/j.bspc.2017.05.008_bib0105","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.yebeh.2015.02.012","article-title":"Automatic seizure detection using Stockwell transform and boosting algorithm for long-term EEG","volume":"45","author":"Yan","year":"2015","journal-title":"Epilepsy Behav."},{"issue":"6","key":"10.1016\/j.bspc.2017.05.008_bib0110","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1016\/j.irbm.2013.07.012","article-title":"Analysis of ECG signal denoising method based on S-transform","volume":"34","author":"Das","year":"2013","journal-title":"IRBm"},{"issue":"1","key":"10.1016\/j.bspc.2017.05.008_bib0115","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cmpb.2014.04.008","article-title":"QRS detection using S-Transform and Shannon energy","volume":"116","author":"Zidelmal","year":"2014","journal-title":"Comput. Methods Programs Biomed."},{"issue":"2","key":"10.1016\/j.bspc.2017.05.008_bib0120","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1002\/ana.22548","article-title":"High-frequency oscillations as a new biomarker in epilepsy","volume":"71","author":"Zijlmans","year":"2012","journal-title":"Ann. Neurol."},{"issue":"5","key":"10.1016\/j.bspc.2017.05.008_bib0125","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1162\/089976698300017467","article-title":"Nonlinear component analysis as a kernel eigenvalue problem","volume":"10","author":"Sch\u00f6lkopf","year":"1998","journal-title":"Neural Comput."},{"key":"10.1016\/j.bspc.2017.05.008_bib0130","series-title":"Pattern Classification","author":"Duda","year":"2012"},{"key":"10.1016\/j.bspc.2017.05.008_bib0135","series-title":"Encyclopedia of Distances","author":"Deza","year":"2009"},{"issue":"2","key":"10.1016\/j.bspc.2017.05.008_bib0140","first-page":"1","article-title":"Comprehensive survey on distance\/similarity measures between probability density functions","volume":"1","author":"Cha","year":"2007","journal-title":"City"},{"key":"10.1016\/j.bspc.2017.05.008_bib0145","series-title":"Modern Mathematical Methods for Physicists and Engineers","author":"Cantrell","year":"2000"},{"key":"10.1016\/j.bspc.2017.05.008_bib0150","series-title":"Statistics for Research","author":"Dowdy","year":"2011"},{"issue":"6","key":"10.1016\/j.bspc.2017.05.008_bib0155","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.64.061907","article-title":"Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state","volume":"64","author":"Andrzejak","year":"2001","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.bspc.2017.05.008_bib0160","doi-asserted-by":"crossref","DOI":"10.1155\/2007\/80510","article-title":"Automatic seizure detection based on time-frequency analysis and artificial neural networks","volume":"2007","author":"Tzallas","year":"2007","journal-title":"Comput. Intell. Neurosci."},{"issue":"1","key":"10.1016\/j.bspc.2017.05.008_bib0165","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.jneumeth.2010.08.030","article-title":"Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks","volume":"193","author":"Guo","year":"2010","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.bspc.2017.05.008_bib0170","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/s11517-012-0967-8","article-title":"Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis","volume":"2","author":"Xie","year":"2013","journal-title":"Med. Biol. Eng. Comput."},{"issue":"2","key":"10.1016\/j.bspc.2017.05.008_bib0175","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.bspc.2010.01.004","article-title":"Epilepsy seizure detection using eigen-system spectral estimation and Multiple Layer Perceptron neural network","volume":"5","author":"Naghsh-Nilchi","year":"2010","journal-title":"Biomed. Signal Process. Control"},{"issue":"10","key":"10.1016\/j.bspc.2017.05.008_bib0180","doi-asserted-by":"crossref","first-page":"13475","DOI":"10.1016\/j.eswa.2011.04.149","article-title":"EEG signals classification using the K-means clustering and a multilayer perceptron neural network model","volume":"38","author":"Orhan","year":"2011","journal-title":"Expert Syst. Appl."},{"issue":"3","key":"10.1016\/j.bspc.2017.05.008_bib0185","doi-asserted-by":"crossref","first-page":"506","DOI":"10.1016\/j.eswa.2005.04.011","article-title":"Recurrent neural networks employing Lyapunov exponents for EEG signals classification","volume":"29","author":"G\u00fcler","year":"2005","journal-title":"Expert Syst. Appl."},{"issue":"9","key":"10.1016\/j.bspc.2017.05.008_bib0190","doi-asserted-by":"crossref","first-page":"1545","DOI":"10.1109\/TBME.2007.891945","article-title":"Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection","volume":"54","author":"Ghosh-Dastidar","year":"2007","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"6","key":"10.1016\/j.bspc.2017.05.008_bib0195","doi-asserted-by":"crossref","first-page":"909","DOI":"10.1016\/j.bspc.2013.09.001","article-title":"Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series","volume":"8","author":"Kalbkhani","year":"2013","journal-title":"Biomed. Signal Process. Control"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S174680941730099X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S174680941730099X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,1]],"date-time":"2018-09-01T04:29:30Z","timestamp":1535776170000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S174680941730099X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":39,"alternative-id":["S174680941730099X"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2017.05.008","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Stockwell transform for epileptic seizure detection from EEG signals","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2017.05.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}