{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T01:06:53Z","timestamp":1720660013817},"reference-count":27,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,3,1]],"date-time":"2017-03-01T00:00:00Z","timestamp":1488326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2017,3]]},"DOI":"10.1016\/j.bspc.2016.12.003","type":"journal-article","created":{"date-parts":[[2017,1,16]],"date-time":"2017-01-16T17:31:41Z","timestamp":1484587901000},"page":"392-399","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Prostate cancer recognition based on mass spectrometry sensing data and data fingerprint recovery"],"prefix":"10.1016","volume":"33","author":[{"given":"Khalfalla","family":"Awedat","sequence":"first","affiliation":[]},{"given":"Ikhlas","family":"Abdel-Qader","sequence":"additional","affiliation":[]},{"given":"James R.","family":"Springstead","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2016.12.003_bib0005","unstructured":"Tim Conrad, et al., Sparse Proteomics Analysis-A compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data, arXiv preprint arXiv:1506.03620 (2015)."},{"key":"10.1016\/j.bspc.2016.12.003_bib0010","doi-asserted-by":"crossref","first-page":"1240","DOI":"10.1111\/j.1745-7254.2008.00861.x","article-title":"Discrimination analysis of mass spectrometry proteomics for ovarian cancer detection","volume":"29.10","author":"Hong","year":"2008","journal-title":"Acta Pharmacol. Sin."},{"issue":"17","key":"10.1016\/j.bspc.2016.12.003_bib0015","doi-asserted-by":"crossref","first-page":"2059","DOI":"10.1093\/bioinformatics\/btl355","article-title":"Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching","volume":"22","author":"Du","year":"2006","journal-title":"Bioinformatics"},{"key":"10.1016\/j.bspc.2016.12.003_bib0020","doi-asserted-by":"crossref","first-page":"925","DOI":"10.1089\/106652703322756159","article-title":"Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum","volume":"10.6","author":"Lilien","year":"2003","journal-title":"J. Comput. Biol."},{"issue":"1\u20133","key":"10.1016\/j.bspc.2016.12.003_bib0025","first-page":"389","article-title":"Gene selection for cancer classification using support vector machines","volume":"46","author":"Guyon","year":"2016","journal-title":"Mach. Learn."},{"key":"10.1016\/j.bspc.2016.12.003_bib0030","unstructured":"T Conrad., M. Genzel, N. Cvetkovic, N. Wulkow, J. Vybiral, G. Kutyniok, C. Sch\u00fctte, Sparse Proteomics Analysis-a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data., eprint arXiv:1506.03620 (2015)."},{"key":"10.1016\/j.bspc.2016.12.003_bib0035","series-title":"Advances in Neural Information Processing Systems","article-title":"Sparse representation for signal classification","author":"Huang","year":"2006"},{"key":"10.1016\/j.bspc.2016.12.003_bib0040","unstructured":"Ewout van den Berg, Convex optimization for generalized sparse recovery., (Vancouver) (2009)."},{"key":"10.1016\/j.bspc.2016.12.003_bib0045","series-title":"Convex Optimization","author":"Stephen","year":"2007"},{"key":"10.1016\/j.bspc.2016.12.003_bib0050","article-title":"Mass spectrum data processing based on compressed sensing recognition and sparse difference recovery","author":"Liu","year":"2012","journal-title":"Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference On, IEEE"},{"key":"10.1016\/j.bspc.2016.12.003_bib0055","series-title":"Inexact Newton Methods Applied to Under\u2013Determined Systems","author":"Simonis","year":"2016"},{"key":"10.1016\/j.bspc.2016.12.003_bib0060","doi-asserted-by":"crossref","DOI":"10.1109\/FSKD.2012.6234250","article-title":"Mass spectrum data processing based on compressed sensing recognition and sparse difference recovery","author":"Liu","year":"2012","journal-title":"Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference On, IEEE"},{"key":"10.1016\/j.bspc.2016.12.003_bib0065","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1111\/j.1467-9868.2005.00503.x","article-title":"Regularization and variable selection via the elastic net","volume":"267.2","author":"Zou","year":"2005","journal-title":"J. R. Stat. Soc. B"},{"key":"10.1016\/j.bspc.2016.12.003_bib0070","doi-asserted-by":"crossref","DOI":"10.1109\/CVPR.2011.5995556","article-title":"Is face recognition really a compressive sensing problem?","author":"Shi","year":"2011","journal-title":"Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference"},{"key":"10.1016\/j.bspc.2016.12.003_bib0075","doi-asserted-by":"crossref","first-page":"1576","DOI":"10.1093\/jnci\/94.20.1576","article-title":"Serum proteomic patterns for detection of prostate cancer","volume":"94.20","author":"Petricoin","year":"2002","journal-title":"J. Natl. Cancer Inst."},{"key":"10.1016\/j.bspc.2016.12.003_bib0080","doi-asserted-by":"crossref","first-page":"1240","DOI":"10.1111\/j.1745-7254.2008.00861.x","article-title":"Discrimination analysis of mass spectrometry proteomics for ovarian cancer detection","volume":"29.10","author":"Hong","year":"2008","journal-title":"Acta Pharmacol. Sin."},{"key":"10.1016\/j.bspc.2016.12.003_bib0085","doi-asserted-by":"crossref","first-page":"912","DOI":"10.1109\/JSTSP.2011.2159773","article-title":"Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning","author":"Zhang","year":"2011","journal-title":"Selected Topics in Signal Processing, IEEE Journal of 5.5"},{"key":"10.1016\/j.bspc.2016.12.003_bib0090","first-page":"211","article-title":"Sparse Bayesian learning and the relevance vector machine","volume":"1","author":"Tipping","year":"2001","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.bspc.2016.12.003_bib0095","first-page":"383","article-title":"Analysis of sparse Bayesian learning","volume":"14","author":"Tipping","year":"2002","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.bspc.2016.12.003_bib0100","first-page":"211","article-title":"Sparse Bayesian learning and the relevance vector machine","volume":"1","author":"Tipping","year":"2001","journal-title":"J. Mach. Learn. Res."},{"issue":"8","key":"10.1016\/j.bspc.2016.12.003_bib0105","doi-asserted-by":"crossref","first-page":"2009","DOI":"10.1109\/TSP.2013.2241055","article-title":"Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation","volume":"61","author":"Zhang","year":"2013","journal-title":"Signal Process. IEEE Trans."},{"issue":"9","key":"10.1016\/j.bspc.2016.12.003_bib0110","doi-asserted-by":"crossref","first-page":"6236","DOI":"10.1109\/TIT.2011.2162174","article-title":"Latent variable Bayesian models for promoting sparsity","volume":"57","author":"Wipf","year":"2011","journal-title":"Inf. Theory IEEE Trans."},{"key":"10.1016\/j.bspc.2016.12.003_bib0115","doi-asserted-by":"crossref","first-page":"2360","DOI":"10.1109\/TIT.2011.2111670","article-title":"Deterministic construction of binary, bipolar, and ternary compressed sensing matrices","volume":"57.4","author":"Amini","year":"2011","journal-title":"Inf. Theory IEEE Trans."},{"key":"10.1016\/j.bspc.2016.12.003_bib0120","doi-asserted-by":"crossref","first-page":"925","DOI":"10.1089\/106652703322756159","article-title":"Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum","volume":"10.6","author":"Lilien","year":"2003","journal-title":"J. Comput. Biol."},{"key":"10.1016\/j.bspc.2016.12.003_bib0125","doi-asserted-by":"crossref","first-page":"2009","DOI":"10.1109\/TSP.2013.2241055","article-title":"Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation","volume":"61.8","author":"Zhang","year":"2013","journal-title":"Signal Processing, IEEE Transactions"},{"key":"10.1016\/j.bspc.2016.12.003_bib0130","doi-asserted-by":"crossref","first-page":"890","DOI":"10.1137\/080714488","article-title":"Probing the Pareto frontier for basis pursuit solutions","volume":"31","author":"Van Den Berg","year":"2008","journal-title":"SIAM Journal on Scientific Computing"},{"key":"10.1016\/j.bspc.2016.12.003_bib0135","unstructured":"E. Friedlander, M.P. van den Berg, {SPGL1}: A solver for large-scale sparse reconstruction, June 2007. [Online]."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809416302154?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809416302154?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,17]],"date-time":"2019-09-17T12:34:08Z","timestamp":1568723648000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809416302154"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3]]},"references-count":27,"alternative-id":["S1746809416302154"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2016.12.003","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2017,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Prostate cancer recognition based on mass spectrometry sensing data and data fingerprint recovery","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2016.12.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}