{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T18:10:08Z","timestamp":1732126208150,"version":"3.28.0"},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.asoc.2024.112150","type":"journal-article","created":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T19:06:30Z","timestamp":1724526390000},"page":"112150","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A reference learning network for fault diagnosis of rotating machinery under strong noise"],"prefix":"10.1016","volume":"166","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6749-9203","authenticated-orcid":false,"given":"Yinjun","family":"Wang","sequence":"first","affiliation":[]},{"given":"Zhigang","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5321-0894","authenticated-orcid":false,"given":"Xiaoxi","family":"Ding","sequence":"additional","affiliation":[]},{"given":"Yanbin","family":"Du","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Li","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2024.112150_b1","first-page":"1","article-title":"A weight multinet architecture for bearing fault classification under complex speed conditions","volume":"70","author":"Ding","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"5","key":"10.1016\/j.asoc.2024.112150_b2","doi-asserted-by":"crossref","first-page":"6600","DOI":"10.1109\/JSEN.2020.3042182","article-title":"Intelligent rolling bearing fault diagnosis via vision ConvNet","volume":"21","author":"Wang","year":"2021","journal-title":"IEEE Sensors J."},{"key":"10.1016\/j.asoc.2024.112150_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2023.109741","article-title":"Single gated RNN with differential weighted information storage mechanism and its application to machine RUL prediction","volume":"242","author":"Xiang","year":"2024","journal-title":"Reliab. Eng. Syst. Saf."},{"issue":"10","key":"10.1016\/j.asoc.2024.112150_b4","doi-asserted-by":"crossref","first-page":"6558","DOI":"10.1109\/TII.2021.3134273","article-title":"ConditionSenseNet: A deep interpolatory ConvNet for bearing intelligent diagnosis under variational working conditions","volume":"18","author":"Wang","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.asoc.2024.112150_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2023.109832","article-title":"A novel data augmentation approach to fault diagnosis with class-imbalance problem","volume":"243","author":"Tian","year":"2024","journal-title":"Reliab. Eng. Syst. Saf."},{"issue":"10","key":"10.1016\/j.asoc.2024.112150_b6","doi-asserted-by":"crossref","first-page":"2313","DOI":"10.1109\/TIM.2016.2575318","article-title":"Fault diagnosis using a joint model based on sparse representation and SVM","volume":"65","author":"Ren","year":"2016","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.asoc.2024.112150_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2023.109805","article-title":"Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning","volume":"243","author":"Dong","year":"2024","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.asoc.2024.112150_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.116290","article-title":"Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in squirrel cage induction motors","volume":"191","author":"Kumar","year":"2022","journal-title":"Expert Syst. Appl."},{"issue":"10","key":"10.1016\/j.asoc.2024.112150_b9","doi-asserted-by":"crossref","first-page":"6466","DOI":"10.1109\/TII.2020.2964117","article-title":"A robust weight-shared capsule network for intelligent machinery fault diagnosis","volume":"16","author":"Huang","year":"2020","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.asoc.2024.112150_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105791","article-title":"Multiple local domains transfer network for equipment fault intelligent identification","volume":"120","author":"Wang","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"5","key":"10.1016\/j.asoc.2024.112150_b11","doi-asserted-by":"crossref","first-page":"2252","DOI":"10.1109\/TMECH.2020.3012179","article-title":"Machinery health monitoring based on unsupervised feature learning via generative adversarial networks","volume":"25","author":"Dai","year":"2020","journal-title":"IEEE\/ASME Trans. Mechatron."},{"issue":"12","key":"10.1016\/j.asoc.2024.112150_b12","doi-asserted-by":"crossref","first-page":"10865","DOI":"10.1109\/TIE.2019.2959492","article-title":"Macroscopic\u2013microscopic attention in LSTM networks based on fusion features for gear remaining life prediction","volume":"67","author":"Qin","year":"2020","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"4","key":"10.1016\/j.asoc.2024.112150_b13","doi-asserted-by":"crossref","first-page":"3445","DOI":"10.1109\/TIE.2020.2978690","article-title":"Attention recurrent neural network-based severity estimation method for interturn short-circuit fault in permanent magnet synchronous machines","volume":"68","author":"Lee","year":"2021","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"2","key":"10.1016\/j.asoc.2024.112150_b14","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1007\/s11265-018-1378-3","article-title":"A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier","volume":"91","author":"Eren","year":"2018","journal-title":"J. Signal Process. Syst."},{"key":"10.1016\/j.asoc.2024.112150_b15","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.matcom.2023.08.007","article-title":"Input-to-state stability of stochastic Markovian jump genetic regulatory networks","volume":"222","author":"Cao","year":"2024","journal-title":"Math. Comput. Simul."},{"issue":"6","key":"10.1016\/j.asoc.2024.112150_b16","doi-asserted-by":"crossref","first-page":"3797","DOI":"10.1109\/TII.2019.2941868","article-title":"Multiscale kernel based residual convolutional neural network for motor fault diagnosis under nonstationary conditions","volume":"16","author":"Liu","year":"2020","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.asoc.2024.112150_b17","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.asoc.2024.112150_b18","first-page":"1","article-title":"Intelligent fault diagnosis of gearbox under variable working conditions with adaptive intraclass and interclass convolutional neural network","author":"Zhao","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.asoc.2024.112150_b19","doi-asserted-by":"crossref","first-page":"4681","DOI":"10.1109\/TII.2019.2943898","article-title":"Deep residual shrinkage networks for fault diagnosis","volume":"16","author":"Zhao","year":"2020","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"2","key":"10.1016\/j.asoc.2024.112150_b20","doi-asserted-by":"crossref","first-page":"425","DOI":"10.3390\/s17020425","article-title":"A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals","volume":"17","author":"Zhang","year":"2017","journal-title":"Sensors"},{"issue":"1","key":"10.1016\/j.asoc.2024.112150_b21","first-page":"1","article-title":"Attention-guided joint learning CNN with noise robustness for bearing fault diagnosis and vibration signal denoising","volume":"1","author":"Wang","year":"2021","journal-title":"ISA Trans."},{"issue":"1","key":"10.1016\/j.asoc.2024.112150_b22","first-page":"1","article-title":"Model-driven deep unrolling: Towards interpretable deep learning against noise attacks for intelligent fault diagnosis","volume":"1","author":"Zhao","year":"2022","journal-title":"ISA Trans."},{"issue":"2","key":"10.1016\/j.asoc.2024.112150_b23","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1006\/mssp.1996.0056","article-title":"Analysis of computed order tracking","volume":"11","author":"Fyfe","year":"1997","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.asoc.2024.112150_b24","series-title":"2014 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1891","article-title":"Deep learning face representation from predicting 10,000 classes","author":"Sun","year":"2014"},{"issue":"11","key":"10.1016\/j.asoc.2024.112150_b25","doi-asserted-by":"crossref","first-page":"8680","DOI":"10.1109\/TIM.2020.2998233","article-title":"Deep focus parallel convolutional neural network for imbalanced classification of machinery fault diagnostics","volume":"69","author":"Duan","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"10","key":"10.1016\/j.asoc.2024.112150_b26","doi-asserted-by":"crossref","first-page":"10767","DOI":"10.1109\/JSEN.2023.3265409","article-title":"A fault diagnosis method of rolling bearing based on improved recurrence plot and convolutional neural network","volume":"23","author":"Liu","year":"2023","journal-title":"IEEE Sens. J."},{"issue":"3","key":"10.1016\/j.asoc.2024.112150_b27","doi-asserted-by":"crossref","first-page":"1695","DOI":"10.1109\/TMECH.2022.3223358","article-title":"Attention-based bilinear feature fusion method for bearing fault diagnosis","volume":"28","author":"Wang","year":"2023","journal-title":"IEEE\/ASME Trans. Mechatronics"},{"issue":"1","key":"10.1016\/j.asoc.2024.112150_b28","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1109\/TII.2022.3161674","article-title":"Multiscale deep graph convolutional networks for intelligent fault diagnosis of rotor-bearing system under fluctuating working conditions","volume":"19","author":"Zhao","year":"2023","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"3","key":"10.1016\/j.asoc.2024.112150_b29","doi-asserted-by":"crossref","first-page":"2552","DOI":"10.1109\/TII.2022.3165027","article-title":"A meta-learning method for electric machine bearing fault diagnosis under varying working conditions with limited data","volume":"19","author":"Chen","year":"2023","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"1","key":"10.1016\/j.asoc.2024.112150_b30","doi-asserted-by":"crossref","first-page":"1745","DOI":"10.1016\/j.dib.2018.11.019","article-title":"Bearing vibration data collected under time-varying rotational speed conditions","volume":"8","author":"Huang","year":"2018","journal-title":"Data Brief"},{"issue":"1","key":"10.1016\/j.asoc.2024.112150_b31","first-page":"1","article-title":"A guide to convolutional neural networks for computer vision","volume":"8","author":"Khan","year":"2018","journal-title":"Synth. Lect. Comput. Vis."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494624009244?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494624009244?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T17:53:36Z","timestamp":1732125216000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494624009244"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":31,"alternative-id":["S1568494624009244"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2024.112150","relation":{},"ISSN":["1568-4946"],"issn-type":[{"type":"print","value":"1568-4946"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A reference learning network for fault diagnosis of rotating machinery under strong noise","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2024.112150","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"112150"}}