{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,13]],"date-time":"2024-11-13T06:40:15Z","timestamp":1731480015417,"version":"3.28.0"},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.asoc.2024.111434","type":"journal-article","created":{"date-parts":[[2024,2,28]],"date-time":"2024-02-28T16:48:08Z","timestamp":1709138888000},"page":"111434","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Modified genetic algorithm and fine-tuned long short-term memory network for intrusion detection in the internet of things networks with edge capabilities"],"prefix":"10.1016","volume":"155","author":[{"given":"Yakub Kayode","family":"Saheed","sequence":"first","affiliation":[]},{"given":"Oluwadamilare Harazeem","family":"Abdulganiyu","sequence":"additional","affiliation":[]},{"given":"Taha Ait","family":"Tchakoucht","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2024.111434_bib1","doi-asserted-by":"crossref","DOI":"10.1016\/j.cose.2023.103167","article-title":"Network anomaly detection methods in IoT environments via deep learning: a fair comparison of performance and robustness","volume":"128","author":"Bovenzi","year":"2023","journal-title":"Comput. Secur."},{"key":"10.1016\/j.asoc.2024.111434_bib2","article-title":"A voting gray wolf optimizer-based ensemble learning models for intrusion detection in the Internet of Things","author":"Kayode","year":"2024","journal-title":"Int. J. Inf. Secur."},{"key":"10.1016\/j.asoc.2024.111434_bib3","unstructured":"Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are What, vol. 28, no. 1. 2014, pp. 41\u201362."},{"key":"10.1016\/j.asoc.2024.111434_bib4","first-page":"323","article-title":"Machine learning-based blockchain technology for protection and privacy against intrusion attacks in intelligent transportation systems","volume":"16","author":"Saheed","year":"2022","journal-title":"Mach. Learn., Block Technol. Big Data Anal. IoTs: Methods, Technol. Appl.,"},{"issue":"4","key":"10.1016\/j.asoc.2024.111434_bib5","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1109\/MPRV.2009.82","article-title":"The case for VM-based cloudlets in mobile computing","volume":"8","author":"Satyanarayanan","year":"2009","journal-title":"IEEE Pervasive Comput."},{"key":"10.1016\/j.asoc.2024.111434_bib6","doi-asserted-by":"crossref","unstructured":"Y.K. Saheed, S. Misra, and S. Chockalingam, Autoencoder via DCNN and LSTM Models for Intrusion Detection in Industrial Control Systems of Critical Infrastructures, 2023 in: Proceedings of the IEEE\/ACM fourth Int. Work. Eng. Cybersecurity Crit. Syst. (EnCyCriS), Melbourne, Aust., 9\u201316, 2023, doi: 10.1109\/EnCyCriS59249.2023.00006.","DOI":"10.1109\/EnCyCriS59249.2023.00006"},{"issue":"24","key":"10.1016\/j.asoc.2024.111434_bib7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/app10248934","article-title":"Efficient learning of healthcare data from IoT devices by edge convolution neural networks","volume":"10","author":"He","year":"2020","journal-title":"Appl. Sci."},{"issue":"14","key":"10.1016\/j.asoc.2024.111434_bib8","doi-asserted-by":"crossref","first-page":"1633","DOI":"10.3390\/electronics10141633","article-title":"Classifier performance evaluation for lightweight IDS using fog computing in IoT security","volume":"10","author":"Khater","year":"2021","journal-title":"Electronics"},{"issue":"5","key":"10.1016\/j.asoc.2024.111434_bib9","doi-asserted-by":"crossref","first-page":"810","DOI":"10.1109\/TC.2016.2620469","article-title":"Hybrid method for minimizing service delay in edge cloud computing through VM Migration and transmission power control","volume":"66","author":"Rodrigues","year":"2017","journal-title":"IEEE Trans. Comput."},{"issue":"11","key":"10.1016\/j.asoc.2024.111434_bib10","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1109\/MCOM.2016.1600169CM","article-title":"Energy consumption minimization for FiWi enhanced LTE-A HetNets with UE connection Constraint","volume":"54","author":"Liu","year":"2016","journal-title":"IEEE Commun. Mag."},{"issue":"1","key":"10.1016\/j.asoc.2024.111434_bib11","doi-asserted-by":"crossref","DOI":"10.1186\/s13677-021-00243-9","article-title":"A novel approach for IoT tasks offloading in edge-cloud environments","volume":"10","author":"Almutairi","year":"2021","journal-title":"J. Cloud Comput."},{"issue":"2","key":"10.1016\/j.asoc.2024.111434_bib12","doi-asserted-by":"crossref","first-page":"1153","DOI":"10.1109\/COMST.2015.2494502","article-title":"A survey of data mining and machine learning methods for cyber security intrusion detection","volume":"18","author":"Buczak","year":"2016","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"10.1016\/j.asoc.2024.111434_bib13","article-title":"Enhanced data storage security in cloud based on blowfish algorithm and text steganography","author":"Mabayoje","year":"2018","journal-title":"J. Niger. Comput. Soc."},{"key":"10.1016\/j.asoc.2024.111434_bib14","series-title":"in: Recurrent Neural Networks","first-page":"167","article-title":"Data analytics for intrusion detection system based on recurrent neural network and supervised machine learning methods","author":"Saheed","year":"2023"},{"issue":"8","key":"10.1016\/j.asoc.2024.111434_bib15","doi-asserted-by":"crossref","first-page":"6882","DOI":"10.1109\/JIOT.2020.2970501","article-title":"Passban IDS: an intelligent anomaly-based intrusion detection system for IoT edge devices","volume":"7","author":"Eskandari","year":"2020","journal-title":"IEEE Internet Things J."},{"issue":"6","key":"10.1016\/j.asoc.2024.111434_bib16","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/MCE.2018.2851723","article-title":"Fair resource allocation in an intrusion-detection system for edge computing: ensuring the security of Internet of Things devices","volume":"7","author":"Lin","year":"2018","journal-title":"IEEE Consum. Electron. Mag."},{"issue":"2","key":"10.1016\/j.asoc.2024.111434_bib17","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1109\/MCOM.2018.1700332","article-title":"Deep learning: the frontier for distributed attack detection in fog-to-things computing","volume":"56","author":"Abeshu","year":"2018","journal-title":"IEEE Commun. Mag."},{"key":"10.1016\/j.asoc.2024.111434_bib18","doi-asserted-by":"crossref","unstructured":"M. Nobakht, V. Sivaraman, and R. Boreli, A host-based intrusion detection and mitigation framework for smart home IoT using OpenFlow, in: Proceedings of the - 2016 Eleventh Int. Conf. Availability, Reliab. Secur. ARES 2016, 147\u2013156, 2016, doi: 10.1109\/ARES.2016.64.","DOI":"10.1109\/ARES.2016.64"},{"key":"10.1016\/j.asoc.2024.111434_bib19","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.comcom.2016.12.001","article-title":"Hybrid of anomaly-based and specification-based IDS for Internet of Things using unsupervised OPF based on MapReduce approach","volume":"98","author":"Bostani","year":"2017","journal-title":"Comput. Commun."},{"issue":"5","key":"10.1016\/j.asoc.2024.111434_bib20","first-page":"213","article-title":"Identification of malicious edge devices in fog computing environments","volume":"26","author":"Sandhu","year":"2017","journal-title":"Inf. Secur. J."},{"key":"10.1016\/j.asoc.2024.111434_bib21","doi-asserted-by":"crossref","unstructured":"M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula, Autoencoder-based feature learning for cyber security applications, in: Proceedings of the Int. Jt. Conf. Neural Networks, 2017-May, 3854\u20133861, 2017, doi: 10.1109\/IJCNN.2017.7966342.","DOI":"10.1109\/IJCNN.2017.7966342"},{"key":"10.1016\/j.asoc.2024.111434_bib22","article-title":"GLIDE: a game theory and data-driven mimicking linkage intrusion detection for edge computing networks","volume":"2020","author":"Li","year":"2020","journal-title":"Complexity"},{"issue":"3","key":"10.1016\/j.asoc.2024.111434_bib23","doi-asserted-by":"crossref","first-page":"494","DOI":"10.1007\/s11036-015-0644-x","article-title":"Anomaly detection system in cloud environment using fuzzy clustering based ANN","volume":"21","author":"Pandeeswari","year":"2016","journal-title":"Mob. Netw. Appl."},{"key":"10.1016\/j.asoc.2024.111434_bib24","article-title":"Distributed attack detection scheme using deep learning approach for Internet of Things","author":"Diro","year":"2017","journal-title":"Futur. Gener. Comput. Syst."},{"issue":"19","key":"10.1016\/j.asoc.2024.111434_bib25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/cpe.5101","article-title":"Adaptive machine learning-based alarm reduction via edge computing for distributed intrusion detection systems","volume":"31","author":"Wang","year":"2019","journal-title":"Concurr. Comput."},{"issue":"1","key":"10.1016\/j.asoc.2024.111434_bib26","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/TNSM.2020.2966951","article-title":"IoT-KEEPER: detecting malicious iot network activity using online traffic analysis at the edge","volume":"17","author":"Hafeez","year":"2020","journal-title":"IEEE Trans. Netw. Serv. Manag."},{"issue":"1","key":"10.1016\/j.asoc.2024.111434_bib27","doi-asserted-by":"crossref","DOI":"10.1186\/s13638-018-1267-2","article-title":"Hypergraph clustering model-based association analysis of DDOS attacks in fog computing intrusion detection system","volume":"2018","author":"An","year":"2018","journal-title":"Eurasip J. Wirel. Commun. Netw."},{"key":"10.1016\/j.asoc.2024.111434_bib28","doi-asserted-by":"crossref","unstructured":"J. Schneible and A. Lu, Anomaly detection on the edge, Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2017-Octob, pp. 678\u2013682, 2017, doi: 10.1109\/MILCOM.2017.8170817.","DOI":"10.1109\/MILCOM.2017.8170817"},{"issue":"2","key":"10.1016\/j.asoc.2024.111434_bib29","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1109\/JIOT.2020.3008488","article-title":"Ad hoc vehicular fog enabling cooperative low-latency intrusion detection","volume":"8","author":"Mourad","year":"2021","journal-title":"IEEE Internet Things J."},{"issue":"1","key":"10.1016\/j.asoc.2024.111434_bib30","article-title":"A lightweight perceptron-based intrusion detection system for fog computing","volume":"9","author":"Khater","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.asoc.2024.111434_bib31","doi-asserted-by":"crossref","unstructured":"H. Sedjelmaci, S.M. Senouci, and M. Al-Bahri, A lightweight anomaly detection technique for low-resource IoT devices: A game-theoretic methodology, in: Proceedings of the IEEE Int. Conf. Commun. ICC 2016, 2016, doi: 10.1109\/ICC.2016.7510811.","DOI":"10.1109\/ICC.2016.7510811"},{"key":"10.1016\/j.asoc.2024.111434_bib32","doi-asserted-by":"crossref","unstructured":"D. Utomo and P.A. Hsiung, Anomaly detection at the IoT edge using deep learning, in: Proceedings of the IEEE Int. Conf. Consum. Electron. - Taiwan, ICCE-TW 2019, pp. 1\u20132, 2019, doi: 10.1109\/ICCE-TW46550.2019.8991929.","DOI":"10.1109\/ICCE-TW46550.2019.8991929"},{"key":"10.1016\/j.asoc.2024.111434_bib33","doi-asserted-by":"crossref","unstructured":"M. Niedermaier, M. Striegel, F. Sauer, D. Merli, and G. Sigl, Efficient Intrusion Detection on Low-Performance Industrial IoT Edge Node Devices, 1\u201316, 2019, [Online]. http:\/\/arxiv.org\/abs\/1908.03964.","DOI":"10.23919\/AE.2019.8867032"},{"issue":"6","key":"10.1016\/j.asoc.2024.111434_bib34","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1109\/MNET.011.2000286","article-title":"Internet of Things intrusion detection: centralized, on-device, or federated learning?","volume":"34","author":"Rahman","year":"2020","journal-title":"IEEE Netw."},{"key":"10.1016\/j.asoc.2024.111434_bib35","doi-asserted-by":"crossref","first-page":"217463","DOI":"10.1109\/ACCESS.2020.3041793","article-title":"Intrusion detection for wireless edge networks based on federated learning","volume":"vol. 8","author":"Chen","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.asoc.2024.111434_bib36","doi-asserted-by":"crossref","unstructured":"T.D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.R. Sadeghi, D\u00cfoT: A federated self-learning anomaly detection system for IoT, in: Proc. - Int. Conf. Distrib. Comput. Syst.,2019-July, 756\u2013767, 2019, doi: 10.1109\/ICDCS.2019.00080.","DOI":"10.1109\/ICDCS.2019.00080"},{"issue":"5","key":"10.1016\/j.asoc.2024.111434_bib37","doi-asserted-by":"crossref","first-page":"3930","DOI":"10.1109\/JIOT.2021.3100755","article-title":"Federated deep learning for zero-day botnet attack detection in IoT-edge devices","volume":"9","author":"Popoola","year":"2022","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.asoc.2024.111434_bib38","unstructured":"K.K. L and L.T.Q. Qin, K. Poularakis, Line-speed and scalable intrusion detection at the network edge via federated learning, in: Proceedings of the 2020 IFIP Networking Conference (Networking), 2020, pp. 352\u2013360, [Online]. Available: \u3008https:\/\/ieeexplore.ieee.org\/abstract\/document\/9142704\u3009."},{"key":"10.1016\/j.asoc.2024.111434_bib39","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1016\/j.procs.2022.12.052","article-title":"SComparison of artificial artificial intelligence intelligence algorithms algorithms for for IoT IoT Botnet Botnet comparison of detection on on Apache Apache spark spark platform platform detection","volume":"215","author":"Anwar","year":"2023","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.asoc.2024.111434_bib40","doi-asserted-by":"crossref","unstructured":"R. Mortier et al., Personal Data Management with the Databox, 49\u201354, 2016, doi: 10.1145\/3010079.3010082.","DOI":"10.1145\/3010079.3010082"},{"key":"10.1016\/j.asoc.2024.111434_bib41","doi-asserted-by":"crossref","unstructured":"E.B. Beigi, H.H. Jazi, N. Stakhanova, and A.A. Ghorbani, Towards effective feature selection in machine learning-based botnet detection approaches, in: Proceedings of the 2014 IEEE Conf. Commun. Netw. Secur. CNS 2014, 247\u2013255, 2014, doi: 10.1109\/CNS.2014.6997492.","DOI":"10.1109\/CNS.2014.6997492"},{"key":"10.1016\/j.asoc.2024.111434_bib42","unstructured":"I. Hafeez, M. Antikainen, A.Y. Ding, and S. Tarkoma, IoT-KEEPER: Securing IoT communications in edge networks, 2018, [Online]. \u3008http:\/\/arxiv.org\/abs\/1810.08415\u3009."},{"key":"10.1016\/j.asoc.2024.111434_bib43","article-title":"Towards an efficient model for network intrusion detection system (IDS): systematic literature review","author":"Abdulganiyu","year":"2023","journal-title":"Wirel. Netw."},{"key":"10.1016\/j.asoc.2024.111434_bib44","doi-asserted-by":"crossref","DOI":"10.1007\/s10207-023-00682-2","article-title":"A systematic literature review for network intrusion detection system (IDS)","author":"Abdulganiyu","year":"2023","journal-title":"Int. J. Inf. Secur."},{"issue":"2","key":"10.1016\/j.asoc.2024.111434_bib45","first-page":"426","article-title":"An Efficient Hybridization of K-Means and Genetic Algorithm Based on Support Vector Machine for Cyber Intrusion Detection System","volume":"14","author":"Saheed","year":"2022","journal-title":"Int. J. Electr. Eng. Inform."},{"issue":"10","key":"10.1016\/j.asoc.2024.111434_bib46","doi-asserted-by":"crossref","DOI":"10.3390\/e23101258","article-title":"An insider data leakage detection using one-hot encoding, synthetic minority oversampling and machine learning techniques","volume":"23","author":"Al-shehari","year":"2021","journal-title":"Entropy"},{"key":"10.1016\/j.asoc.2024.111434_bib47","series-title":"Illumination of Artificial Intelligence in Cybersecurity and Forensics. Lecture Notes on Data Engineering and Communications Technologies","article-title":"A binary firefly algorithm based feature selection method on high dimensional intrusion detection data","author":"Saheed","year":"2022"},{"key":"10.1016\/j.asoc.2024.111434_bib48","doi-asserted-by":"crossref","unstructured":"P. Lin, T.Y., Goyal, P., Girshick, R., He, & K. Doll\u00e1r, Focal loss for dense object detection, in: Proceedings of the IEEE international conference on computer vision, 2017, 2980\u20132988, doi: 10.1109\/ICAICTA49861.2020.9428882.","DOI":"10.1109\/ICCV.2017.324"},{"key":"10.1016\/j.asoc.2024.111434_bib49","article-title":"Feature selection in intrusion detection systems: a new hybrid fusion of Bat algorithm and Residue Number System","author":"Saheed","year":"2023","journal-title":"J. Inf. Telecommun."},{"year":"2015","series-title":"Genetic Algorithms in Java Basics","author":"Jacobson","key":"10.1016\/j.asoc.2024.111434_bib50"},{"key":"10.1016\/j.asoc.2024.111434_bib51","doi-asserted-by":"crossref","unstructured":"S. Katoch, S.S. Chauhan, and V. Kumar, A review on genetic algorithm: past, present, and future, Multimedia Tools and Applications, 80, (5) 2021.","DOI":"10.1007\/s11042-020-10139-6"},{"issue":"7","key":"10.1016\/j.asoc.2024.111434_bib52","first-page":"1","article-title":"Intrusion detection system for the internet of things based on blockchain and multi-agent systems","volume":"9","author":"Liang","year":"2020","journal-title":"Electron"},{"issue":"5","key":"10.1016\/j.asoc.2024.111434_bib53","article-title":"A novel hybrid ensemble learning for anomaly detection in industrial sensor networks and SCADA systems for smart city infrastructures","volume":"35","author":"Kayode Saheed","year":"2023","journal-title":"J. King Saud. Univ. Comput. Inf. Sci."},{"key":"10.1016\/j.asoc.2024.111434_bib54","doi-asserted-by":"crossref","first-page":"779","DOI":"10.1016\/j.future.2019.05.041","article-title":"Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset","volume":"100","author":"Koroniotis","year":"2019","journal-title":"Futur. Gener. Comput. Syst."},{"key":"10.1016\/j.asoc.2024.111434_bib55","doi-asserted-by":"crossref","unstructured":"N. Moustafa and J. Slay, UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set), in: Proceedings of the 2015 Mil. Commun. Inf. Syst. Conf. MilCIS 2015 - Proc., 2015, doi: 10.1109\/MilCIS.2015.7348942.","DOI":"10.1109\/MilCIS.2015.7348942"},{"issue":"3","key":"10.1016\/j.asoc.2024.111434_bib56","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1109\/MPRV.2018.03367731","article-title":"N-BaIoT-Network-based detection of IoT botnet attacks using deep autoencoders","volume":"17","author":"Meidan","year":"2018","journal-title":"IEEE Pervasive Comput."},{"key":"10.1016\/j.asoc.2024.111434_bib57","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.patcog.2019.02.023","article-title":"The impact of class imbalance in classification performance metrics based on the binary confusion matrix","volume":"91","author":"Luque","year":"2019","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.asoc.2024.111434_bib58","doi-asserted-by":"crossref","DOI":"10.1016\/j.cose.2022.102957","article-title":"A hierarchical intrusion detection system based on extreme learning machine and nature-inspired optimization","volume":"124","author":"Alzaqebah","year":"2023","journal-title":"Comput. Secur."},{"issue":"19","key":"10.1016\/j.asoc.2024.111434_bib59","doi-asserted-by":"crossref","first-page":"123","DOI":"10.3991\/ijim.v17i19.27663","article-title":"An effective intrusion detection in mobile ad-hoc network using deep belief networks and long short-term memory","volume":"17","author":"Hanafi","year":"2023","journal-title":"Int. J. Interact. Mob. Technol."},{"issue":"3","key":"10.1016\/j.asoc.2024.111434_bib60","doi-asserted-by":"crossref","first-page":"1686","DOI":"10.1109\/COMST.2020.2986444","article-title":"Machine learning in IoT security: current solutions and future challenges","volume":"22","author":"Hussain","year":"2020","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"10.1016\/j.asoc.2024.111434_bib61","unstructured":"N. Constant, D. Borthakur, M. Abtahi, H. Dubey, and K. Mankodiya, Fog-Assisted wIoT: A Smart Fog Gateway for End-to-End Analytics in Wearable Internet of Things, 1\u20135, 2017, [Online]. http:\/\/arxiv.org\/abs\/1701.08680."},{"key":"10.1016\/j.asoc.2024.111434_bib62","doi-asserted-by":"crossref","DOI":"10.1109\/TCBB.2023.3305429","article-title":"Microarray gene expression data classification via Wilcoxon Sign Rank Sum and Novel Grey Wolf Optimized Ensemble Learning Models","author":"Saheed","year":"2023","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494624002084?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494624002084?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,13]],"date-time":"2024-11-13T05:30:37Z","timestamp":1731475837000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494624002084"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":62,"alternative-id":["S1568494624002084"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2024.111434","relation":{},"ISSN":["1568-4946"],"issn-type":[{"type":"print","value":"1568-4946"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Modified genetic algorithm and fine-tuned long short-term memory network for intrusion detection in the internet of things networks with edge capabilities","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2024.111434","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"111434"}}