{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:33:47Z","timestamp":1726763627548},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.asoc.2023.110936","type":"journal-article","created":{"date-parts":[[2023,10,14]],"date-time":"2023-10-14T04:29:26Z","timestamp":1697257766000},"page":"110936","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"PA","title":["Bridging machine learning and weighted residual methods for delay differential equations of fractional order"],"prefix":"10.1016","volume":"149","author":[{"given":"Tayebeh","family":"Taheri","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9505-819X","authenticated-orcid":false,"given":"Alireza","family":"Afzal Aghaei","sequence":"additional","affiliation":[]},{"given":"Kourosh","family":"Parand","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2023.110936_b1","series-title":"A Report on the Use of Delay Differential Equations in Numerical Modelling in the Biosciences","author":"Baker","year":"1999"},{"key":"10.1016\/j.asoc.2023.110936_b2","series-title":"Order, Disorder and Chaos in Quantum Systems: Proceedings of a Conference Held at Dubna, USSR on October 17\u201321 1989","first-page":"319","article-title":"Kato problem for functional-differential equations and difference Schr\u00f6dinger operators","author":"Derfel","year":"1990"},{"issue":"1","key":"10.1016\/j.asoc.2023.110936_b3","article-title":"On coupled Lane-Emden equations arising in dusty fluid models","volume":"268","author":"Flockerzi","year":"2011","journal-title":"J. Phys.: Conf. Ser."},{"issue":"3","key":"10.1016\/j.asoc.2023.110936_b4","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1007\/s00220-016-2753-1","article-title":"Nonlinear asymptotic stability of the Lane-Emden solutions for the viscous gaseous star problem with degenerate density dependent viscosities","volume":"347","author":"Luo","year":"2016","journal-title":"Comm. Math. Phys."},{"issue":"6","key":"10.1016\/j.asoc.2023.110936_b5","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1016\/j.newast.2012.02.003","article-title":"Application of the BPES to Lane\u2013Emden equations governing polytropic and isothermal gas spheres","volume":"17","author":"Boubaker","year":"2012","journal-title":"New Astron."},{"issue":"3","key":"10.1016\/j.asoc.2023.110936_b6","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.crma.2006.12.008","article-title":"On a class of singular Gierer\u2013Meinhardt systems arising in morphogenesis","volume":"344","author":"Ghergu","year":"2007","journal-title":"C. R. Math."},{"key":"10.1016\/j.asoc.2023.110936_b7","doi-asserted-by":"crossref","first-page":"361","DOI":"10.2528\/PIER07090403","article-title":"Solution of an integro-differential equation arising in oscillating magnetic fields using He\u2019s homotopy perturbation method","volume":"78","author":"Dehghan","year":"2008","journal-title":"Prog. Electromagn. Res."},{"issue":"2","key":"10.1016\/j.asoc.2023.110936_b8","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1515\/fca-2015-0026","article-title":"Solving fractional delay differential equations: a new approach","volume":"18","author":"Daftardar-Gejji","year":"2015","journal-title":"Fract. Calc. Appl. Anal."},{"key":"10.1016\/j.asoc.2023.110936_b9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s40314-021-01456-z","article-title":"The memory effect on fractional calculus: an application in the spread of COVID-19","volume":"40","author":"Barros","year":"2021","journal-title":"Comput. Appl. Math."},{"issue":"8","key":"10.1016\/j.asoc.2023.110936_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.jksus.2021.101596","article-title":"A class of Langevin time-delay differential equations with general fractional orders and their applications to vibration theory","volume":"33","author":"Huseynov","year":"2021","journal-title":"J. King Saud Univ.-Sci."},{"issue":"3","key":"10.1016\/j.asoc.2023.110936_b11","doi-asserted-by":"crossref","first-page":"855","DOI":"10.1137\/0152048","article-title":"Analysis of a model representing stage-structured population growth with state-dependent time delay","volume":"52","author":"Aiello","year":"1992","journal-title":"SIAM J. Appl. Math."},{"issue":"6","key":"10.1016\/j.asoc.2023.110936_b12","doi-asserted-by":"crossref","DOI":"10.1088\/0031-8949\/78\/06\/065004","article-title":"The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics","volume":"78","author":"Dehghan","year":"2008","journal-title":"Phys. Scr."},{"issue":"01","key":"10.1016\/j.asoc.2023.110936_b13","first-page":"1","article-title":"The exact solution of delay differential equations using coupling variational iteration with Taylor series and small term","volume":"4","author":"Rangkuti","year":"2012","journal-title":"Bull. Math."},{"issue":"2","key":"10.1016\/j.asoc.2023.110936_b14","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s42452-018-0130-8","article-title":"Semi-analytical solution for some proportional delay differential equations","volume":"1","author":"Chamekh","year":"2019","journal-title":"SN Appl. Sci."},{"key":"10.1016\/j.asoc.2023.110936_b15","doi-asserted-by":"crossref","DOI":"10.1155\/2015\/139821","article-title":"Numerical solution of pantograph-type delay differential equations using perturbation-iteration algorithms","volume":"2015","author":"Bah\u015fi","year":"2015","journal-title":"J. Appl. Math."},{"key":"10.1016\/j.asoc.2023.110936_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.chaos.2022.112997","article-title":"A stability analysis for multi-term fractional delay differential equations with higher order","volume":"167","author":"Yang","year":"2023","journal-title":"Chaos Solitons Fractals"},{"issue":"1","key":"10.1016\/j.asoc.2023.110936_b17","first-page":"1","article-title":"Investigation of network models finite difference method","volume":"2","author":"Johnson","year":"2023","journal-title":"Eurasian J. Chem. Med. Petrol. Res."},{"key":"10.1016\/j.asoc.2023.110936_b18","article-title":"Parameter estimation in uncertain delay differential equations via the method of moments","volume":"431","author":"Gao","year":"2022","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.asoc.2023.110936_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.sysconle.2022.105384","article-title":"On stability of solutions of stochastic delay differential equations","volume":"169","author":"Ngoc","year":"2022","journal-title":"Systems Control Lett."},{"issue":"8","key":"10.1016\/j.asoc.2023.110936_b20","doi-asserted-by":"crossref","first-page":"5819","DOI":"10.1016\/j.aej.2021.11.009","article-title":"Numerical solution of delay differential equation using two-derivative Runge-Kutta type method with Newton interpolation","volume":"61","author":"Senu","year":"2022","journal-title":"Alex. Eng. J."},{"key":"10.1016\/j.asoc.2023.110936_b21","doi-asserted-by":"crossref","first-page":"159","DOI":"10.46481\/jnsps.2021.247","article-title":"A new multi-step method for solving delay differential equations using Lagrange interpolation","author":"Shaalini","year":"2021","journal-title":"J. Nigerian Soc. Phys. Sci."},{"issue":"7\u20138","key":"10.1016\/j.asoc.2023.110936_b22","doi-asserted-by":"crossref","first-page":"1129","DOI":"10.1515\/ijnsns-2020-0103","article-title":"Wavelet collocation methods for solving neutral delay differential equations","volume":"23","author":"Faheem","year":"2022","journal-title":"Int. J. Nonlinear Sci. Numer. Simul."},{"issue":"5","key":"10.1016\/j.asoc.2023.110936_b23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1140\/epjp\/s13360-020-00449-x","article-title":"Solving a new design of nonlinear second-order Lane\u2013Emden pantograph delay differential model via Bernoulli collocation method","volume":"135","author":"Adel","year":"2020","journal-title":"Eur. Phys. J. Plus"},{"issue":"1","key":"10.1016\/j.asoc.2023.110936_b24","first-page":"64","article-title":"Numerical solution of Lane-Emden pantograph delay differential equation: stability and convergence analysis","volume":"13","author":"Sriwastav","year":"2023","journal-title":"Int. J. Math. Model. Numer. Optim."},{"issue":"1","key":"10.1016\/j.asoc.2023.110936_b25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13662-021-03293-0","article-title":"A new numerical method to solve pantograph delay differential equations with convergence analysis","volume":"2021","author":"Jafari","year":"2021","journal-title":"Adv. Difference Equ."},{"key":"10.1016\/j.asoc.2023.110936_b26","article-title":"A computational algorithm for the numerical solution of fractional order delay differential equations","volume":"402","author":"Amin","year":"2021","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.asoc.2023.110936_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.cnsns.2022.107017","article-title":"A re-scaling spectral collocation method for the nonlinear fractional pantograph delay differential equations with non-smooth solutions","volume":"118","author":"Elkot","year":"2023","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"issue":"7\u20138","key":"10.1016\/j.asoc.2023.110936_b28","doi-asserted-by":"crossref","first-page":"1253","DOI":"10.1515\/ijnsns-2020-0124","article-title":"Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations","volume":"23","author":"Abd-Elhameed","year":"2022","journal-title":"Int. J. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.asoc.2023.110936_b29","first-page":"1","article-title":"Numerical solutions of fractional differential equation with multiple delays via block boundary value method","author":"Sharma","year":"2023","journal-title":"Int. J. Dyn. Control"},{"key":"10.1016\/j.asoc.2023.110936_b30","doi-asserted-by":"crossref","first-page":"1639","DOI":"10.1007\/s00034-018-0943-0","article-title":"On the stability analysis of systems of neutral delay differential equations","volume":"38","author":"Liu","year":"2019","journal-title":"Circuits Systems Signal Process."},{"issue":"9","key":"10.1016\/j.asoc.2023.110936_b31","doi-asserted-by":"crossref","first-page":"3476","DOI":"10.1002\/mma.4839","article-title":"A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation","volume":"41","author":"Dehghan","year":"2018","journal-title":"Math. Methods Appl. Sci."},{"key":"10.1016\/j.asoc.2023.110936_b32","series-title":"Solving delay differential equations through RBF collocation","author":"Bernal","year":"2017"},{"key":"10.1016\/j.asoc.2023.110936_b33","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.apnum.2021.05.012","article-title":"A Galerkin meshless reproducing kernel particle method for numerical solution of neutral delay time-space distributed-order fractional damped diffusion-wave equation","volume":"169","author":"Abbaszadeh","year":"2021","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.asoc.2023.110936_b34","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.enganabound.2017.07.019","article-title":"A local meshless method based on the finite collocation and local integral equations method for delay PDEs","volume":"83","author":"Takhtabnoos","year":"2017","journal-title":"Eng. Anal. Bound. Elem."},{"issue":"14","key":"10.1016\/j.asoc.2023.110936_b35","doi-asserted-by":"crossref","first-page":"6701","DOI":"10.1007\/s00500-022-07065-0","article-title":"Intelligent computing technique for solving singular multi-pantograph delay differential equation","volume":"26","author":"Sabir","year":"2022","journal-title":"Soft Comput."},{"issue":"2","key":"10.1016\/j.asoc.2023.110936_b36","doi-asserted-by":"crossref","first-page":"1197","DOI":"10.1007\/s13369-021-05814-1","article-title":"Design of backpropagated intelligent networks for nonlinear second-order Lane\u2013Emden pantograph delay differential systems","volume":"47","author":"Khan","year":"2022","journal-title":"Arab. J. Sci. Eng."},{"issue":"Suppl 3","key":"10.1016\/j.asoc.2023.110936_b37","doi-asserted-by":"crossref","first-page":"2423","DOI":"10.1007\/s00366-021-01373-z","article-title":"Neural network method: delay and system of delay differential equations","volume":"38","author":"Panghal","year":"2022","journal-title":"Eng. Comput."},{"issue":"1","key":"10.1016\/j.asoc.2023.110936_b38","doi-asserted-by":"crossref","first-page":"494","DOI":"10.3934\/nhm.2023020","article-title":"SLeNN-ELM: A shifted Legendre neural network method for fractional delay differential equations based on extreme learning machine","volume":"18","author":"Ye","year":"2023","journal-title":"NHM"},{"key":"10.1016\/j.asoc.2023.110936_b39","unstructured":"J. Zhang, Q. Zhu, W. Yang, W. Lin, SYNC: Safety-aware neural control for stabilizing stochastic delay-differential equations, in: The Eleventh International Conference on Learning Representations, 2023."},{"key":"10.1016\/j.asoc.2023.110936_b40","doi-asserted-by":"crossref","first-page":"352","DOI":"10.1007\/s10851-019-00903-1","article-title":"Deep neural networks motivated by partial differential equations","volume":"62","author":"Ruthotto","year":"2020","journal-title":"J. Math. Imaging Vision"},{"issue":"9","key":"10.1016\/j.asoc.2023.110936_b41","doi-asserted-by":"crossref","first-page":"1356","DOI":"10.1109\/TNNLS.2012.2202126","article-title":"Approximate solutions to ordinary differential equations using least squares support vector machines","volume":"23","author":"Mehrkanoon","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"4","key":"10.1016\/j.asoc.2023.110936_b42","doi-asserted-by":"crossref","first-page":"830","DOI":"10.1016\/j.cnsns.2013.07.024","article-title":"Parameter estimation of delay differential equations: an integration-free LS-SVM approach","volume":"19","author":"Mehrkanoon","year":"2014","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"issue":"3","key":"10.1016\/j.asoc.2023.110936_b43","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"issue":"3","key":"10.1016\/j.asoc.2023.110936_b44","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1023\/A:1018628609742","article-title":"Least squares support vector machine classifiers","volume":"9","author":"Suykens","year":"1999","journal-title":"Neural Process. Lett."},{"issue":"4","key":"10.1016\/j.asoc.2023.110936_b45","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1109\/72.935093","article-title":"Financial time series prediction using least squares support vector machines within the evidence framework","volume":"12","author":"Van Gestel","year":"2001","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.asoc.2023.110936_b46","series-title":"Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines: Theory, Algorithms and Applications","first-page":"199","article-title":"Solving integral equations by ls-svr","author":"Parand","year":"2023"},{"key":"10.1016\/j.asoc.2023.110936_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.chaos.2021.111232","article-title":"Least squares support vector regression for differential equations on unbounded domains","volume":"151","author":"Pakniyat","year":"2021","journal-title":"Chaos Solitons Fractals"},{"issue":"6","key":"10.1016\/j.asoc.2023.110936_b48","doi-asserted-by":"crossref","first-page":"5637","DOI":"10.1016\/j.aej.2021.04.034","article-title":"Parallel LS-SVM for the numerical simulation of fractional Volterra\u2019s population model","volume":"60","author":"Parand","year":"2021","journal-title":"Alex. Eng. J."},{"key":"10.1016\/j.asoc.2023.110936_b49","first-page":"1","article-title":"A neural network approach for solving nonlinear differential equations of lane\u2013emden type","author":"Parand","year":"2023","journal-title":"Eng. Comput."},{"issue":"5","key":"10.1016\/j.asoc.2023.110936_b50","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1111\/j.1365-246X.1967.tb02303.x","article-title":"Linear models of dissipation whose Q is almost frequency independent\u2014II","volume":"13","author":"Caputo","year":"1967","journal-title":"Geophys. J. Int."},{"key":"10.1016\/j.asoc.2023.110936_b51","series-title":"An Introduction to the Fractional Calculus and Fractional Differential Equations","author":"Miller","year":"1993"},{"key":"10.1016\/j.asoc.2023.110936_b52","series-title":"New Approach to Numerical Methods","author":"Parand","year":"2019"},{"key":"10.1016\/j.asoc.2023.110936_b53","series-title":"Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines","author":"Rad","year":"2023"},{"key":"10.1016\/j.asoc.2023.110936_b54","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.patcog.2018.07.010","article-title":"A novel formulation of orthogonal polynomial kernel functions for SVM classifiers: The Gegenbauer family","volume":"84","author":"Padierna","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.asoc.2023.110936_b55","series-title":"Least Squares Support Vector Machines","author":"Suykens","year":"2002"},{"key":"10.1016\/j.asoc.2023.110936_b56","article-title":"An efficient approximation technique applied to a non-linear Lane\u2013Emden pantograph delay differential model","volume":"401","author":"Izadi","year":"2021","journal-title":"Appl. Math. Comput."},{"issue":"7","key":"10.1016\/j.asoc.2023.110936_b57","first-page":"2183","article-title":"A new collocation method for solution of mixed linear integro-differential-difference equations","volume":"216","author":"G\u00fclsu","year":"2010","journal-title":"Appl. Math. Comput."},{"issue":"2","key":"10.1016\/j.asoc.2023.110936_b58","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1016\/j.cam.2005.02.009","article-title":"A Taylor polynomial approach for solving differential-difference equations","volume":"186","author":"G\u00fclsu","year":"2006","journal-title":"J. Comput. Appl. Math."},{"issue":"1","key":"10.1016\/j.asoc.2023.110936_b59","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/j.cam.2005.12.015","article-title":"A Taylor method for numerical solution of generalized pantograph equations with linear functional argument","volume":"200","author":"Sezer","year":"2007","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.asoc.2023.110936_b60","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.matcom.2020.08.018","article-title":"Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations","volume":"180","author":"Faheem","year":"2021","journal-title":"Math. Comput. Simulation"},{"key":"10.1016\/j.asoc.2023.110936_b61","first-page":"1","article-title":"Jacobi spectral collocation method for solving fractional pantograph delay differential equations","author":"Yang","year":"2020","journal-title":"Eng. Comput."},{"key":"10.1016\/j.asoc.2023.110936_b62","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.cam.2012.06.034","article-title":"Analysis and numerical methods for fractional differential equations with delay","volume":"252","author":"Morgado","year":"2013","journal-title":"J. Comput. Appl. Math."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623009547?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623009547?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,20]],"date-time":"2023-11-20T08:49:37Z","timestamp":1700470177000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494623009547"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":62,"alternative-id":["S1568494623009547"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2023.110936","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Bridging machine learning and weighted residual methods for delay differential equations of fractional order","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2023.110936","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"110936"}}