{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,14]],"date-time":"2024-08-14T19:51:15Z","timestamp":1723665075300},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.asoc.2023.110703","type":"journal-article","created":{"date-parts":[[2023,8,7]],"date-time":"2023-08-07T01:54:24Z","timestamp":1691373264000},"page":"110703","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Effective full connection neural network updating using a quantized full FORCE algorithm"],"prefix":"10.1016","volume":"147","author":[{"given":"Mehdi","family":"Heidarian","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9323-0312","authenticated-orcid":false,"given":"Gholamreza","family":"Karimi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2023.110703_b1","doi-asserted-by":"crossref","first-page":"1071","DOI":"10.1007\/s11831-019-09344-w","article-title":"A survey of deep learning and its applications: A new paradigm to machine learning","volume":"27","author":"Dargan","year":"2020","journal-title":"Arch. Comput. Methods Eng."},{"key":"10.1016\/j.asoc.2023.110703_b2","article-title":"A survey on deep learning and its applications","volume":"40","author":"Shi","year":"2021","journal-title":"Comp. Sci. Rev."},{"key":"10.1016\/j.asoc.2023.110703_b3","first-page":"11313","article-title":"How robust are deep neural networks?","volume":"1804","author":"Sengupta","year":"2018","journal-title":"Neural Evol. Comput."},{"key":"10.1016\/j.asoc.2023.110703_b4","series-title":"Intelligent Data-Centric Systems, Big Data Analytics for Sensor-Network Collected Intelligence","first-page":"117","article-title":"Extreme learning machine and its applications in big data processing","author":"Cen","year":"2017"},{"key":"10.1016\/j.asoc.2023.110703_b5","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neucom.2018.08.062","article-title":"DMP-ELMs: Data and model parallel extreme learning machines for large-scale learning tasks","volume":"320","author":"Yuewei","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2023.110703_b6","series-title":"Improving neural networks by preventing co-adaptation of feature detectors","author":"Hinton","year":"2012"},{"key":"10.1016\/j.asoc.2023.110703_b7","series-title":"Advances in Neural Information Processing Systems","article-title":"Understanding dropout","author":"Baldi","year":"2013"},{"key":"10.1016\/j.asoc.2023.110703_b8","doi-asserted-by":"crossref","unstructured":"J. Zhao, M. Hu, Y. Ding, G. Xu, C. Wu, Explore adaptive dropout deep computing and reinFORCEment learning to large-scale tasks processing for big data, in: IEEE\/CIC International Conference on Communications in China (ICCC), 2019, pp. 994\u2013999.","DOI":"10.1109\/ICCChina.2019.8855933"},{"key":"10.1016\/j.asoc.2023.110703_b9","series-title":"An empirical analysis of dropout in piecewise linear networks","author":"Warde-Farley","year":"2013"},{"issue":"2","key":"10.1016\/j.asoc.2023.110703_b10","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1109\/TII.2012.2187914","article-title":"Selection of proper neural network sizes and architectures: A comparative study","volume":"8","author":"Hunter","year":"2012","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.asoc.2023.110703_b11","series-title":"Applied Soft Computing","first-page":"898","article-title":"A pruning approach to optimize synaptic connections and select relevant input parameters for neural network modeling of solar radiation","volume":"Vol. 52","author":"hussain","year":"2017"},{"key":"10.1016\/j.asoc.2023.110703_b12","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1142\/S0129065797000513","article-title":"A survey of partially connected neural networks","volume":"08","author":"Elizondo","year":"1997","journal-title":"Int. J. Neural Syst."},{"key":"10.1016\/j.asoc.2023.110703_b13","series-title":"The 2013 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Designing partially-connected, multilayer perceptron neural nets through information gain","author":"Rodr\u00edguez-Salas","year":"2013"},{"key":"10.1016\/j.asoc.2023.110703_b14","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.neucom.2020.12.070","article-title":"Facial expression recognition with polynomial Legendre and partial connection MLP","volume":"434","author":"Gholamreza","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2023.110703_b15","article-title":"Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection","volume":"212","author":"Shivani","year":"2021","journal-title":"Sci. Comput. Program."},{"key":"10.1016\/j.asoc.2023.110703_b16","article-title":"Assessing feature selection method performance with class imbalance data","volume":"6","author":"Surani","year":"2021","journal-title":"Mach. Learn. Appl."},{"key":"10.1016\/j.asoc.2023.110703_b17","doi-asserted-by":"crossref","unstructured":"S. Feng, H. Wang, Comparison of PCA and LDA Dimensionality Reduction Algorithms based on Wine Dataset, in: 2021 33rd Chinese Control and Decision Conference (CCDC), 2021, pp. 2791\u20132796.","DOI":"10.1109\/CCDC52312.2021.9602325"},{"key":"10.1016\/j.asoc.2023.110703_b18","series-title":"Comparative Study of PCA and LDA for Rice Seeds Quality Inspection, 2019, IEEE AFRICON","first-page":"1","author":"Fabiyi","year":"2019"},{"key":"10.1016\/j.asoc.2023.110703_b19","doi-asserted-by":"crossref","first-page":"544","DOI":"10.1016\/j.neuron.2009.07.018","article-title":"Generating coherent patterns of activity from chaotic neural networks","volume":"63","author":"Sussillo","year":"2009","journal-title":"Neuron"},{"key":"10.1016\/j.asoc.2023.110703_b20","series-title":"Neural Networks and Learning Machines","author":"Haykin","year":"2009"},{"key":"10.1016\/j.asoc.2023.110703_b21","article-title":"Resource efficient activation functions for neural network accelerators","author":"Adedamola","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2023.110703_b22","series-title":"Photonic Reservoir Computing: Optical Recurrent Neural Networks","author":"Brunner","year":"2019"},{"key":"10.1016\/j.asoc.2023.110703_b23","unstructured":"H. Jaeger, The echo state approach to analysing and training recurrent neural networks \u2013 with an Erratum note, GMD Report, 148, 2010, p. 34."},{"issue":"2","key":"10.1016\/j.asoc.2023.110703_b24","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0191527","article-title":"Full-FORCE: A target-based method for training recurrent networks","volume":"13","author":"DePasquale","year":"2018","journal-title":"PLOS ONE"},{"key":"10.1016\/j.asoc.2023.110703_b25","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1016\/j.neunet.2021.06.031","article-title":"Transfer-RLS method and transfer-FORCE learning for simple and fast training of reservoir computing models","volume":"143","author":"Hiroto","year":"2021","journal-title":"Neural Netw."},{"key":"10.1016\/j.asoc.2023.110703_b26","doi-asserted-by":"crossref","first-page":"1451","DOI":"10.1016\/j.eswa.2012.08.046","article-title":"Design of face recognition algorithm using PCA -LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks : Design and its application","volume":"40","author":"Sung-Kwun","year":"2013","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2023.110703_b27","article-title":"A framework for feature selection through boosting","volume":"187","author":"Ahmad","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2023.110703_b28","series-title":"Discriminant Analysis and Statistical Pattern Recognition","isbn-type":"print","author":"McLachlan","year":"2004","ISBN":"http:\/\/id.crossref.org\/isbn\/9780471691150"},{"key":"10.1016\/j.asoc.2023.110703_b29","series-title":"Pattern Recognition","first-page":"261","article-title":"Feature selection","author":"Sergios","year":"2009"},{"key":"10.1016\/j.asoc.2023.110703_b30","series-title":"Photonic Reservoir Computing: Optical Recurrent Neural Networks","author":"Brunner","year":"2019"},{"key":"10.1016\/j.asoc.2023.110703_b31","article-title":"Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge","author":"Huang","year":"2014","journal-title":"The Cancer Imaging Archive"},{"key":"10.1016\/j.asoc.2023.110703_b32","doi-asserted-by":"crossref","unstructured":"P. Lucey, J.F. Cohnm, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, The Extended Cohn-Kanade Dataset (CK+): A complete facial expression dataset for action unit and emotion-specified expression, in: 3rd IEEE Workshop on CVPR for Human Communicative Behavior Analysis, 2010.","DOI":"10.1109\/CVPRW.2010.5543262"},{"key":"10.1016\/j.asoc.2023.110703_b33","unstructured":"IMPA-FACE3D Technical Reports. visgraf.impa.br. Retrieved 2018-03-0."},{"key":"10.1016\/j.asoc.2023.110703_b34","series-title":"International Language Resources and Evaluation Conference","article-title":"Induced disgust, happiness and surprise: an addition to the mmi facial expression dataset","author":"Valstar","year":"2010"},{"key":"10.1016\/j.asoc.2023.110703_b35","series-title":"Proc. 11th Int. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS)","first-page":"1","article-title":"The mug facial expression dataset","author":"Aifanti","year":"2010"},{"issue":"5","key":"10.1016\/j.asoc.2023.110703_b36","first-page":"1","article-title":"Cancer diagnosis via linear programming","volume":"23","author":"Mangasarian","year":"1990","journal-title":"SIAM News"},{"issue":"Part II","key":"10.1016\/j.asoc.2023.110703_b37","first-page":"179","article-title":"The use of multiple measurements in taxonomic problems","volume":"7","author":"Fisher","year":"1950","journal-title":"Annual Eugenics"},{"key":"10.1016\/j.asoc.2023.110703_b38","first-page":"109","article-title":"A probablistic classification system for predicting the cellular localization sites of proteins","author":"Paul","year":"1996","journal-title":"Intell. Syst. Molecular Biol."},{"key":"10.1016\/j.asoc.2023.110703_b39","article-title":"An automated breast cancer diagnosis using feature selection and parameter optimization in ANN","volume":"90","author":"Punitha","year":"2021","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.asoc.2023.110703_b40","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.csbj.2016.11.004","article-title":"A hybrid computer-aided-diagnosis system for prediction of breast cancer recurrence (HPBCR) using optimized ensemble learning","volume":"15","author":"Mohebian","year":"2017","journal-title":"Comput. Struct. Biotech. J."},{"key":"10.1016\/j.asoc.2023.110703_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2022.109023","article-title":"Training of the feed forward artificial neural networks using dragonfly algorithm","volume":"124","author":"G\u00fclc\u00fc","year":"2022","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2023.110703_b42","doi-asserted-by":"crossref","first-page":"710","DOI":"10.1109\/TNNLS.2019.2914082","article-title":"Heterogeneous multilayer generalized operational perceptron","volume":"31","author":"Tran","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.asoc.2023.110703_b43","series-title":"2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT)","first-page":"1","article-title":"Comparison of machine learning methods for breast cancer diagnosis","author":"Bayrak","year":"2019"},{"key":"10.1016\/j.asoc.2023.110703_b44","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1016\/j.procs.2021.07.062","article-title":"Machine learning algorithms for breast cancer prediction and diagnosis","volume":"191","author":"Mohammed","year":"2021","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.asoc.2023.110703_b45","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.asoc.2018.07.060","article-title":"An optimum ANN-based breast cancer diagnosis: Bridging gaps between ANN learning and decision-making goals","volume":"72","author":"Ruholla","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2023.110703_b46","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.neucom.2016.10.044","article-title":"Progressive operational perceptrons","volume":"224","author":"Kiranyaz","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2023.110703_b47","doi-asserted-by":"crossref","first-page":"9174","DOI":"10.3390\/app11199174","article-title":"A unified framework of deep learning-based facial expression recognition system for diversified applications","volume":"11","author":"Hossain","year":"2021","journal-title":"Appl. Sci."},{"key":"10.1016\/j.asoc.2023.110703_b48","doi-asserted-by":"crossref","first-page":"995","DOI":"10.1109\/TMM.2012.2186121","article-title":"Finding celebrities in billions of web images","volume":"14","author":"Zhang","year":"2012","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.asoc.2023.110703_b49","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.jpdc.2019.04.017","article-title":"Automatic social signal analysis: Facial expression recognition using difference convolution neural network","volume":"131","author":"chen","year":"2019","journal-title":"J. Parallel Distrib. Comput."},{"key":"10.1016\/j.asoc.2023.110703_b50","doi-asserted-by":"crossref","DOI":"10.1016\/j.jvcir.2019.102659","article-title":"Fusing dynamic deep learned features and handcrafted features for facial expression recognition","volume":"65","author":"Fan","year":"2019","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.asoc.2023.110703_b51","doi-asserted-by":"crossref","unstructured":"H. Zhang, Z. Su\u00a0W.\u00a0Wang, Expression-Identity Fusion Network For Facial Expression Recognition, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 2122\u20132126.","DOI":"10.1109\/ICASSP.2019.8683610"},{"key":"10.1016\/j.asoc.2023.110703_b52","doi-asserted-by":"crossref","first-page":"902","DOI":"10.1109\/TMM.2018.2871417","article-title":"Synthesis of realistic facial expressions using expression map","volume":"21","author":"Agarwal","year":"2019","journal-title":"IEEE Trans. Multimed."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623007214?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623007214?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T20:24:26Z","timestamp":1706559866000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494623007214"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":52,"alternative-id":["S1568494623007214"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2023.110703","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Effective full connection neural network updating using a quantized full FORCE algorithm","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2023.110703","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110703"}}