{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:35:46Z","timestamp":1740119746613,"version":"3.37.3"},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.asoc.2023.110035","type":"journal-article","created":{"date-parts":[[2023,1,20]],"date-time":"2023-01-20T08:30:09Z","timestamp":1674203409000},"page":"110035","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["One-dimensional VGGNet for high-dimensional data"],"prefix":"10.1016","volume":"135","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3859-4516","authenticated-orcid":false,"given":"Sheng","family":"Feng","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5538-2064","authenticated-orcid":false,"given":"Liping","family":"Zhao","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3473-1154","authenticated-orcid":false,"given":"Haiyan","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Mengfei","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7558-5379","authenticated-orcid":false,"given":"Shigen","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Weixing","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.asoc.2023.110035_b1","first-page":"1","article-title":"Intelligent workflow scheduling for big data applications in IoT cloud computing environments","volume":"24","author":"Abualigah","year":"2021","journal-title":"Cluster Comput."},{"issue":"3","key":"10.1016\/j.asoc.2023.110035_b2","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1007\/s00521-020-05264-0","article-title":"Robust evaluation method of communication network based on the combination of complex network and big data","volume":"33","author":"Huang","year":"2021","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.asoc.2023.110035_b3","doi-asserted-by":"crossref","first-page":"738","DOI":"10.1016\/j.jmsy.2021.03.005","article-title":"Big data analytics for intelligent manufacturing systems: A review","volume":"62","author":"Wang","year":"2021","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.asoc.2023.110035_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107763","article-title":"Designing ECG monitoring healthcare system with federated transfer learning and explainable AI","volume":"236","author":"Raza","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.asoc.2023.110035_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107954","article-title":"Hybrid recommendations and dynamic authoring for AR knowledge capture and re-use in diagnosis applications","volume":"239","author":"del Amo","year":"2022","journal-title":"Knowl.-Based Syst."},{"issue":"15","key":"10.1016\/j.asoc.2023.110035_b6","doi-asserted-by":"crossref","first-page":"8272","DOI":"10.3390\/su13158272","article-title":"Organizational agility in industry 4.0: A systematic literature review","volume":"13","author":"Mrugalska","year":"2021","journal-title":"Sustainability"},{"key":"10.1016\/j.asoc.2023.110035_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.jnca.2021.103053","article-title":"Unknown hostile environment-oriented autonomous WSN deployment using a mobile robot","volume":"182","author":"Feng","year":"2021","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.asoc.2023.110035_b8","doi-asserted-by":"crossref","first-page":"3263","DOI":"10.1109\/TIP.2021.3060164","article-title":"Kalman filter for spatial-temporal regularized correlation filters","volume":"30","author":"Feng","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.asoc.2023.110035_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.jnca.2019.102425","article-title":"Three-dimensional robot localization using cameras in wireless multimedia sensor networks","volume":"146","author":"Feng","year":"2019","journal-title":"J. Netw. Comput. Appl."},{"issue":"6","key":"10.1016\/j.asoc.2023.110035_b10","doi-asserted-by":"crossref","DOI":"10.1177\/1729881418813778","article-title":"Collaboration calibration and three-dimensional localization in multi-view system","volume":"15","author":"Feng","year":"2018","journal-title":"Int. J. Adv. Robot. Syst."},{"key":"10.1016\/j.asoc.2023.110035_b11","first-page":"67","article-title":"Dynamic localization of mobile robot based on improved APIT","volume":"5","author":"Feng","year":"2016","journal-title":"J. Beijing Univ. Posts Telecommun."},{"issue":"3","key":"10.1016\/j.asoc.2023.110035_b12","first-page":"312","article-title":"Dynamic localization of mobile robot based on asynchronous Kalman filter","volume":"34","author":"Wu","year":"2013","journal-title":"J. Northeastern Univ. (Nat. Sci.)"},{"issue":"3","key":"10.1016\/j.asoc.2023.110035_b13","doi-asserted-by":"crossref","DOI":"10.1155\/2014\/271547","article-title":"Grid-based improved maximum likelihood estimation for dynamic localization of mobile robots","volume":"10","author":"Feng","year":"2014","journal-title":"Int. J. Distrib. Sens. Netw."},{"issue":"4","key":"10.1016\/j.asoc.2023.110035_b14","doi-asserted-by":"crossref","first-page":"1789","DOI":"10.1109\/TFUZZ.2017.2752130","article-title":"Fuzzy evaluations of image segmentations","volume":"26","author":"Zi\u00f3\u0142ko","year":"2017","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"3","key":"10.1016\/j.asoc.2023.110035_b15","doi-asserted-by":"crossref","first-page":"324","DOI":"10.3390\/e23030324","article-title":"Ensemble linear subspace analysis of high-dimensional data","volume":"23","author":"Ahmed","year":"2021","journal-title":"Entropy"},{"key":"10.1016\/j.asoc.2023.110035_b16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.fss.2021.02.006","article-title":"Hierarchical data fusion processes involving the M\u00f6bius representation of capacities","volume":"433","author":"Beliakov","year":"2022","journal-title":"Fuzzy Sets and Systems"},{"year":"2015","series-title":"Very deep convolutional networks for large-scale image recognition: International conference on learning representations","author":"Simonyan","key":"10.1016\/j.asoc.2023.110035_b17"},{"key":"10.1016\/j.asoc.2023.110035_b18","series-title":"European Conference on Computer Vision","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"},{"key":"10.1016\/j.asoc.2023.110035_b19","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1007\/s40815-021-01131-9","article-title":"Ranking tourist attractions through online reviews: A novel method with intuitionistic and hesitant fuzzy information based on sentiment analysis","volume":"24","author":"Qin","year":"2021","journal-title":"Int. J. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2023.110035_b20","doi-asserted-by":"crossref","DOI":"10.7717\/peerj-cs.855","article-title":"A deep learning method for the recognition of solar radio burst spectrum","volume":"8","author":"Guo","year":"2022","journal-title":"PeerJ Comput. Sci."},{"issue":"10","key":"10.1016\/j.asoc.2023.110035_b21","first-page":"88","article-title":"Radio signal searching based on convolution neural network","volume":"36","author":"He","year":"2017","journal-title":"Ordnance Ind. Autom."},{"issue":"6","key":"10.1016\/j.asoc.2023.110035_b22","doi-asserted-by":"crossref","first-page":"1799","DOI":"10.1107\/S1600576721010840","article-title":"Automated prediction of lattice parameters from X-ray powder diffraction patterns","volume":"54","author":"Chitturi","year":"2021","journal-title":"J. Appl. Crystallogr."},{"issue":"4","key":"10.1016\/j.asoc.2023.110035_b23","doi-asserted-by":"crossref","first-page":"1906","DOI":"10.1177\/14759217211036880","article-title":"Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights","volume":"21","author":"Malekloo","year":"2022","journal-title":"Struct. Health Monit."},{"issue":"1","key":"10.1016\/j.asoc.2023.110035_b24","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1080\/07350015.2020.1811102","article-title":"Estimation of conditional average treatment effects with high-dimensional data","volume":"40","author":"Fan","year":"2022","journal-title":"J. Bus. Econom. Statist."},{"issue":"1","key":"10.1016\/j.asoc.2023.110035_b25","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.ejor.2020.09.028","article-title":"Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data","volume":"290","author":"Zhang","year":"2021","journal-title":"European J. Oper. Res."},{"key":"10.1016\/j.asoc.2023.110035_b26","doi-asserted-by":"crossref","first-page":"870","DOI":"10.1016\/j.ins.2020.08.081","article-title":"A differential evolution based feature combination selection algorithm for high-dimensional data","volume":"547","author":"Guan","year":"2021","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.asoc.2023.110035_b27","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1007\/s11075-020-01040-2","article-title":"Interpolation of sparse high-dimensional data","volume":"88","author":"Lux","year":"2021","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.asoc.2023.110035_b28","first-page":"1","article-title":"Burning sage: Reversing the curse of dimensionality in the visualization of high-dimensional data","author":"Laa","year":"2021","journal-title":"J. Comput. Graph. Statist."},{"issue":"2","key":"10.1016\/j.asoc.2023.110035_b29","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1007\/s13042-020-01188-2","article-title":"A novel feature learning framework for high-dimensional data classification","volume":"12","author":"Li","year":"2021","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.asoc.2023.110035_b30","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.ins.2021.01.020","article-title":"TAGA: Tabu asexual genetic algorithm embedded in a filter\/filter feature selection approach for high-dimensional data","volume":"565","author":"Salesi","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2023.110035_b31","doi-asserted-by":"crossref","first-page":"40511","DOI":"10.1109\/ACCESS.2021.3064819","article-title":"ResNet autoencoders for unsupervised feature learning from high-dimensional data: Deep models resistant to performance degradation","volume":"9","author":"Wickramasinghe","year":"2021","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.asoc.2023.110035_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2022.103025","article-title":"Detection of COVID-19 using deep learning techniques and classification methods","volume":"59","author":"O\u011fuz","year":"2022","journal-title":"Inf. Process. Manage."},{"issue":"13","key":"10.1016\/j.asoc.2023.110035_b33","doi-asserted-by":"crossref","first-page":"15576","DOI":"10.1021\/acsami.1c22048","article-title":"Deep-learning-based microfluidic droplet classification for multijet monitoring","volume":"14","author":"Choi","year":"2022","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"10.1016\/j.asoc.2023.110035_b34","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.neunet.2021.01.001","article-title":"Multi-scale attention convolutional neural network for time series classification","volume":"136","author":"Chen","year":"2021","journal-title":"Neural Netw."},{"key":"10.1016\/j.asoc.2023.110035_b35","doi-asserted-by":"crossref","first-page":"7016","DOI":"10.1007\/s10489-020-01968-x","article-title":"HFPQ: Deep neural network compression by hardware-friendly pruning-quantization","volume":"51","author":"Fan","year":"2021","journal-title":"Appl. Intell."},{"key":"10.1016\/j.asoc.2023.110035_b36","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.neucom.2021.01.094","article-title":"Deep convolutional neural network architecture design as a bi-level optimization problem","volume":"439","author":"Louati","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2023.110035_b37","doi-asserted-by":"crossref","first-page":"6434","DOI":"10.1109\/TIP.2021.3093795","article-title":"Slimconv: Reducing channel redundancy in convolutional neural networks by features recombining","volume":"30","author":"Qiu","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.asoc.2023.110035_b38","doi-asserted-by":"crossref","first-page":"3956","DOI":"10.1109\/TIP.2021.3064258","article-title":"MESNet: A convolutional neural network for spotting multi-scale micro-expression intervals in long videos","volume":"30","author":"Wang","year":"2021","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"10.1016\/j.asoc.2023.110035_b39","doi-asserted-by":"crossref","first-page":"869","DOI":"10.1109\/TEVC.2021.3060833","article-title":"Convolutional neural networks based lung nodule classification: A surrogate-assisted evolutionary algorithm for hyperparameter optimization","volume":"25","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.asoc.2023.110035_b40","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1109\/TIP.2020.3033158","article-title":"Global-feature encoding U-net (GEU-net) for multi-focus image fusion","volume":"30","author":"Xiao","year":"2020","journal-title":"IEEE Trans. Image Process."},{"year":"2014","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","key":"10.1016\/j.asoc.2023.110035_b41"},{"issue":"4","key":"10.1016\/j.asoc.2023.110035_b42","doi-asserted-by":"crossref","first-page":"7775","DOI":"10.3233\/JIFS-189598","article-title":"Hand gesture intention-based identity recognition using various recognition strategies incorporated with VGG convolution neural network-extracted deep learning features","volume":"40","author":"Ding","year":"2021","journal-title":"J. Intell. Fuzzy Systems"},{"key":"10.1016\/j.asoc.2023.110035_b43","doi-asserted-by":"crossref","DOI":"10.1109\/JBHI.2022.3207456","article-title":"Robust arrhythmia classification based on QRS detection and a compact 1D-CNN for wearable ECG devices","author":"Sabor","year":"2022","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.asoc.2023.110035_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118707","article-title":"Investigation of nearby monitoring station for hourly PM2. 5 forecasting using parallel multi-input 1D-CNN-biLSTM","volume":"211","author":"Zhu","year":"2023","journal-title":"Expert Syst. Appl."},{"issue":"21","key":"10.1016\/j.asoc.2023.110035_b45","doi-asserted-by":"crossref","DOI":"10.3390\/s21217319","article-title":"Bearing fault diagnosis via improved one-dimensional multi-scale dilated CNN","volume":"21","author":"He","year":"2021","journal-title":"Sensors"},{"issue":"23","key":"10.1016\/j.asoc.2023.110035_b46","doi-asserted-by":"crossref","DOI":"10.3390\/su122310090","article-title":"A novel one-dimensional cnn with exponential adaptive gradients for air pollution index prediction","volume":"12","author":"Ragab","year":"2020","journal-title":"Sustainability"},{"key":"10.1016\/j.asoc.2023.110035_b47","first-page":"1","article-title":"A survey of convolutional neural networks: Analysis, applications, and prospects","author":"Li","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.asoc.2023.110035_b48","doi-asserted-by":"crossref","DOI":"10.3390\/app12010174","article-title":"ODPA-CNN: One dimensional parallel atrous convolution neural network for band-selective hyperspectral image classification","volume":"12","author":"Kang","year":"2021","journal-title":"Appl. Sci."},{"issue":"12","key":"10.1016\/j.asoc.2023.110035_b49","doi-asserted-by":"crossref","DOI":"10.3390\/atmos12121626","article-title":"Prediction of air pollutant concentration based on one-dimensional multi-scale CNN-LSTM considering spatial-temporal characteristics: A case study of Xi\u2019an, China","volume":"12","author":"Dai","year":"2021","journal-title":"Atmosphere"},{"key":"10.1016\/j.asoc.2023.110035_b50","doi-asserted-by":"crossref","first-page":"103513","DOI":"10.1109\/ACCESS.2021.3097751","article-title":"One-dimensional CNN approach for ECG arrhythmia analysis in fog-cloud environments","volume":"9","author":"Cheikhrouhou","year":"2021","journal-title":"IEEE Access"},{"issue":"24","key":"10.1016\/j.asoc.2023.110035_b51","doi-asserted-by":"crossref","DOI":"10.3390\/app112411732","article-title":"CNN-based fault detection for smart manufacturing","volume":"11","author":"Neupane","year":"2021","journal-title":"Appl. Sci."},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.asoc.2023.110035_b52"},{"issue":"3","key":"10.1016\/j.asoc.2023.110035_b53","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/51.932724","article-title":"The impact of the MIT-BIH arrhythmia database","volume":"20","author":"Moody","year":"2001","journal-title":"IEEE Eng. Med. Biol. Mag."},{"key":"10.1016\/j.asoc.2023.110035_b54","series-title":"2017 Computing in Cardiology (CinC)","first-page":"1","article-title":"AF classification from a short single lead ECG recording: The PhysioNet\/computing in cardiology challenge 2017","author":"Clifford","year":"2017"},{"key":"10.1016\/j.asoc.2023.110035_b55","doi-asserted-by":"crossref","first-page":"1261","DOI":"10.1016\/j.neucom.2017.06.084","article-title":"Incremental on-line learning: A review and comparison of state of the art algorithms","volume":"275","author":"Losing","year":"2018","journal-title":"Neurocomputing"}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623000534?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623000534?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T03:41:16Z","timestamp":1716608476000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494623000534"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":55,"alternative-id":["S1568494623000534"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2023.110035","relation":{},"ISSN":["1568-4946"],"issn-type":[{"type":"print","value":"1568-4946"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"One-dimensional VGGNet for high-dimensional data","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2023.110035","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110035"}}