{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T05:12:43Z","timestamp":1725253963010},"reference-count":77,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004569","name":"Ministerstwo Edukacji i Nauki Rzeczypospolitej Polskiej","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004569","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005632","name":"Narodowe Centrum Bada\u0144 i Rozwoju","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005632","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1016\/j.asoc.2023.109984","type":"journal-article","created":{"date-parts":[[2023,1,6]],"date-time":"2023-01-06T17:00:18Z","timestamp":1673024418000},"page":"109984","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["5G\/5G+ network management employing AI-based continuous deployment"],"prefix":"10.1016","volume":"134","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3923-4352","authenticated-orcid":false,"given":"Micha\u0142","family":"Panek","sequence":"first","affiliation":[]},{"given":"Adam","family":"Pomyka\u0142a","sequence":"additional","affiliation":[]},{"given":"Ireneusz","family":"Jab\u0142o\u0144ski","sequence":"additional","affiliation":[]},{"given":"Micha\u0142","family":"Wo\u017aniak","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2023.109984_b1","unstructured":"5G PPP Technology Board, AI and ML \u2013 Enablers for Beyond 5G Networks, White Paper Version 1.0, 2021, pp. 1\u2013145, http:\/\/dx.doi.org\/10.5281\/zenodo.4299895, (accessed: May 2022)."},{"key":"10.1016\/j.asoc.2023.109984_b2","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.comcom.2021.01.021","article-title":"Deep learning for network traffic monitoring and analysis (NTMA): A survey","volume":"170","author":"Abbasi","year":"2021","journal-title":"Comput. Commun."},{"key":"10.1016\/j.asoc.2023.109984_b3","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.comnet.2018.09.005","article-title":"Softwarization and virtualization in 5G mobile networks: Benefits, trends and challenges","volume":"146","author":"Condoluci","year":"2018","journal-title":"Comput. Netw."},{"issue":"2","key":"10.1016\/j.asoc.2023.109984_b4","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1109\/MIC.2021.3062487","article-title":"RIC: A RAN intelligent controller platform for AI-enabled cellular networks","volume":"25","author":"Balasubramanian","year":"2021","journal-title":"IEEE Internet Comput."},{"key":"10.1016\/j.asoc.2023.109984_b5","doi-asserted-by":"crossref","first-page":"39580","DOI":"10.1109\/ACCESS.2022.3166160","article-title":"Supporting intelligence in disaggregated open radio access networks: Architectural principles, AI\/ML workflow, and use cases","volume":"10","author":"Giannopoulos","year":"2022","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.asoc.2023.109984_b6","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1109\/MCOM.2015.7010526","article-title":"Toward 5G densenets: architectural advances for effective machine-type communications over femtocells","volume":"53","author":"Condoluci","year":"2015","journal-title":"IEEE Commun. Mag."},{"key":"10.1016\/j.asoc.2023.109984_b7","doi-asserted-by":"crossref","first-page":"22862","DOI":"10.1109\/ACCESS.2020.2969208","article-title":"A survey on intent-driven networks","volume":"8","author":"Pang","year":"2020","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.asoc.2023.109984_b8","doi-asserted-by":"crossref","first-page":"6019","DOI":"10.1007\/s11277-017-4825-8","article-title":"Software defined wireless networks: A survey of issues and solutions","volume":"97","author":"Rangisetti","year":"2017","journal-title":"Wirel. Pers. Commun."},{"key":"10.1016\/j.asoc.2023.109984_b9","series-title":"Evolutionary Multi-Criterion Optimization","first-page":"375","article-title":"Towards standardized and seamless integration of expert knowledge into multi-objective evolutionary optimization algorithms","author":"Lang","year":"2017"},{"key":"10.1016\/j.asoc.2023.109984_b10","first-page":"1","article-title":"A zero-touch network service management approach using AI-enabled CDR analysis","volume":"PP","author":"Rizwan","year":"2021","journal-title":"IEEE Access"},{"issue":"12","key":"10.1016\/j.asoc.2023.109984_b11","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1109\/MCOM.2018.1800107","article-title":"Continuous integration in wireless technology development","volume":"56","author":"Vucnik","year":"2018","journal-title":"IEEE Commun. Mag."},{"key":"10.1016\/j.asoc.2023.109984_b12","series-title":"Flexible and adaptive testbed for 5G experimentations","first-page":"166","author":"Salama","year":"2019"},{"key":"10.1016\/j.asoc.2023.109984_b13","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.jss.2017.02.013","article-title":"Continuous Delivery: Overcoming adoption challenges","volume":"128","author":"Chen","year":"2017","journal-title":"J. Syst. Softw."},{"issue":"2","key":"10.1016\/j.asoc.2023.109984_b14","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/MS.2015.27","article-title":"Continuous delivery: Huge benefits, but challenges too","volume":"32","author":"Chen","year":"2015","journal-title":"IEEE Softw."},{"key":"10.1016\/j.asoc.2023.109984_b15","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1007\/s00362-007-0054-7","article-title":"Nonparametric control chart based on change-point model","volume":"50","author":"Zhou","year":"2009","journal-title":"Statist. Papers"},{"issue":"2","key":"10.1016\/j.asoc.2023.109984_b16","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1007\/s10115-016-0987-z","article-title":"A survey of methods for time series change point detection","volume":"51","author":"Aminikhanghahi","year":"2017","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.asoc.2023.109984_b17","article-title":"A deep-learning model for urban traffic flow prediction with traffic events mined from Twitter","author":"Essien","year":"2020","journal-title":"World Wide Web"},{"key":"10.1016\/j.asoc.2023.109984_b18","series-title":"Proceedings of the 19th International Database Engineering & Applications Symposium","first-page":"62","article-title":"Big data techniques for supporting accurate predictions of energy production from renewable sources","author":"Ceci","year":"2015"},{"key":"10.1016\/j.asoc.2023.109984_b19","doi-asserted-by":"crossref","first-page":"754","DOI":"10.1016\/j.neucom.2015.07.085","article-title":"Transition-aware human activity recognition using smartphones","volume":"171","author":"Reyes-Ortiz","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2023.109984_b20","series-title":"DevOps for the Modern Enterprise: Winning Practices To Transform Legacy IT Organizations","author":"Hering","year":"2018"},{"key":"10.1016\/j.asoc.2023.109984_b21","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1109\/MIC.2013.25","article-title":"Development and deployment at facebook","volume":"17","author":"Feitelson","year":"2013","journal-title":"IEEE Internet Comput."},{"key":"10.1016\/j.asoc.2023.109984_b22","series-title":"2017 IEEE\/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP)","first-page":"123","article-title":"Characterizing experimentation in continuous deployment: A case study on bing","author":"Kevic","year":"2017"},{"key":"10.1016\/j.asoc.2023.109984_b23","series-title":"2021 Joint European Conference on Networks and Communications 6G Summit (EuCNC\/6G Summit)","first-page":"466","article-title":"Performance evaluation of COINS framework for wireless network automation","author":"Bo\u0161kov","year":"2021"},{"key":"10.1016\/j.asoc.2023.109984_b24","series-title":"IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","first-page":"277","article-title":"Walker: DevOps inspired workflow for experimentation","author":"Chwalisz","year":"2019"},{"key":"10.1016\/j.asoc.2023.109984_b25","doi-asserted-by":"crossref","first-page":"8173","DOI":"10.3390\/s21248173","article-title":"Toward modular and flexible open RAN implementations in 6G networks: Traffic steering use case and O-RAN xapps","volume":"21","author":"Dryjanski","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.asoc.2023.109984_b26","series-title":"2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)","first-page":"934","article-title":"Perceived benefits of continuous deployment in software-intensive embedded systems","author":"Dakkak","year":"2021"},{"key":"10.1016\/j.asoc.2023.109984_b27","series-title":"2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","first-page":"1","article-title":"Success factors when transitioning to continuous deployment in software-intensive embedded systems","author":"Dakkak","year":"2021"},{"key":"10.1016\/j.asoc.2023.109984_b28","series-title":"An evaluation of change point detection algorithms","author":"Burg","year":"2020"},{"key":"10.1016\/j.asoc.2023.109984_b29","series-title":"Change-point detection in dynamic networks with missing links","author":"Enikeeva","year":"2021"},{"key":"10.1016\/j.asoc.2023.109984_b30","series-title":"2022 2nd International Conference on Intelligent Technologies (CONIT)","first-page":"1","article-title":"A comparative study on change-point detection methods in time series data","author":"Pushkar","year":"2022"},{"key":"10.1016\/j.asoc.2023.109984_b31","series-title":"Advances in Neural Information Processing Systems, Vol. 34","first-page":"22955","article-title":"Adversarially robust change point detection","author":"Li","year":"2021"},{"key":"10.1016\/j.asoc.2023.109984_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118260","article-title":"Real-time Change-Point Detection: A deep neural network-based adaptive approach for detecting changes in multivariate time series data","volume":"209","author":"Gupta","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2023.109984_b33","series-title":"Detection of abrupt change theory and application","author":"Basseville","year":"1993"},{"issue":"4","key":"10.1016\/j.asoc.2023.109984_b34","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1007\/s00477-019-01692-0","article-title":"Multiple changepoint detection for periodic autoregressive models with an application to river flow analysis","volume":"33","author":"Cucina","year":"2019","journal-title":"Stoch. Environ. Res. Risk Assess."},{"issue":"3\u20134","key":"10.1016\/j.asoc.2023.109984_b35","doi-asserted-by":"crossref","first-page":"358","DOI":"10.1080\/02772248.2015.1123480","article-title":"Change-point detection and variation assessment of the hydrologic regime of the Wenyu River","volume":"98","author":"Zhang","year":"2016","journal-title":"Toxicol. Environ. Chem."},{"issue":"12","key":"10.1016\/j.asoc.2023.109984_b36","doi-asserted-by":"crossref","first-page":"2717","DOI":"10.5194\/se-12-2717-2021","article-title":"Changepoint detection in seismic double-difference data: application of a trans-dimensional algorithm to data-space exploration","volume":"12","author":"Piana\u00a0Agostinetti","year":"2021","journal-title":"Solid Earth"},{"key":"10.1016\/j.asoc.2023.109984_b37","series-title":"2019 IEEE International Symposium on Information Theory (ISIT)","first-page":"787","article-title":"Asynchronous multi-sensor change-point detection for seismic tremors","author":"Xie","year":"2019"},{"issue":"1","key":"10.1016\/j.asoc.2023.109984_b38","doi-asserted-by":"crossref","DOI":"10.3390\/s20010310","article-title":"Easing power consumption of wearable activity monitoring with change point detection","volume":"20","author":"Culman","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.asoc.2023.109984_b39","series-title":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","first-page":"262","article-title":"Using change point detection to automate daily activity segmentation","author":"Aminikhanghahi","year":"2017"},{"issue":"6","key":"10.1016\/j.asoc.2023.109984_b40","doi-asserted-by":"crossref","DOI":"10.3390\/rs12061008","article-title":"On the performances of trend and change-point detection methods for remote sensing data","volume":"12","author":"Militino","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.asoc.2023.109984_b41","series-title":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","first-page":"1","article-title":"Use of Bayesian changepoint detection for spectrum sensing in mobile cognitive radio","author":"Chede","year":"2021"},{"key":"10.1016\/j.asoc.2023.109984_b42","series-title":"2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC\/SmartCity\/DSS)","first-page":"818","article-title":"A change-point detection scheme based on subspace tracking for mobile access traffic","author":"Hirabaru","year":"2016"},{"key":"10.1016\/j.asoc.2023.109984_b43","series-title":"2019 IEEE International Congress on Internet of Things (ICIOT)","first-page":"82","article-title":"Detection of anomalous behavior in wireless devices using changepoint analysis","author":"Manzano","year":"2019"},{"key":"10.1016\/j.asoc.2023.109984_b44","first-page":"370","article-title":"A hybrid algorithm for changepoint aware long-term seasonality detection of mobile network base stations","author":"Kranda","year":"2021","journal-title":"Avrupa Bilim Ve Tek. Dergisi"},{"issue":"2","key":"10.1016\/j.asoc.2023.109984_b45","doi-asserted-by":"crossref","first-page":"637","DOI":"10.1214\/08-AOAS232","article-title":"Detection and localization of change-points in high-dimensional network traffic data","volume":"3","author":"L\u00e9vy-Leduc","year":"2009","journal-title":"Ann. Appl. Stat."},{"key":"10.1016\/j.asoc.2023.109984_b46","series-title":"2021 Joint European Conference on Networks and Communications 6G Summit (EuCNC\/6G Summit)","first-page":"359","article-title":"Anomaly detection and analysis framework for mobile networks","author":"Mendoza","year":"2021"},{"key":"10.1016\/j.asoc.2023.109984_b47","series-title":"2017 28th Irish Signals and Systems Conference (ISSC)","first-page":"1","article-title":"Application of multiple change point detection methods to large urban telecommunication networks","author":"Shields","year":"2017"},{"key":"10.1016\/j.asoc.2023.109984_b48","series-title":"A review of change point detection methods","author":"Truong","year":"2018"},{"issue":"4","key":"10.1016\/j.asoc.2023.109984_b49","first-page":"133","article-title":"Homogeneity and change-point detection tests for multivariate data using rank statistics","volume":"156","author":"Lung-Yut-Fong","year":"2015","journal-title":"J. Soc. Fran\u00e7aise Stat."},{"key":"10.1016\/j.asoc.2023.109984_b50","series-title":"Efficient penalty search for multiple changepoint problems","author":"Haynes","year":"2014"},{"issue":"3","key":"10.1016\/j.asoc.2023.109984_b51","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1541880.1541882","article-title":"Anomaly detection: A survey","volume":"41","author":"Chandola","year":"2009","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.asoc.2023.109984_b52","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1016\/j.csda.2018.07.014","article-title":"Recurrence statistics for anomalous diffusion regime change detection","volume":"128","author":"Sikora","year":"2018","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.asoc.2023.109984_b53","series-title":"Bayesian Time Series Models","first-page":"205","article-title":"Analysis of changepoint models","author":"Eckley","year":"2011"},{"issue":"3","key":"10.1016\/j.asoc.2023.109984_b54","doi-asserted-by":"crossref","first-page":"507","DOI":"10.2307\/2529204","article-title":"A cluster analysis method for grouping means in the analysis of variance","volume":"30","author":"Scott","year":"1974","journal-title":"Biometrics"},{"issue":"500","key":"10.1016\/j.asoc.2023.109984_b55","doi-asserted-by":"crossref","first-page":"1590","DOI":"10.1080\/01621459.2012.737745","article-title":"Optimal detection of changepoints with a linear computational cost","volume":"107","author":"Killick","year":"2012","journal-title":"J. Amer. Statist. Assoc."},{"issue":"2","key":"10.1016\/j.asoc.2023.109984_b56","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1109\/LSP.2001.838216","article-title":"An algorithm for optimal partitioning of data on an interval","volume":"12","author":"Jackson","year":"2005","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.asoc.2023.109984_b57","series-title":"Bayesian online changepoint detection","author":"Adams","year":"2007"},{"key":"10.1016\/j.asoc.2023.109984_b58","series-title":"2021 IEEE International Conference on Big Data (Big Data)","article-title":"WATCH: Wasserstein change point detection for high-dimensional time series data","author":"Faber","year":"2021"},{"key":"10.1016\/j.asoc.2023.109984_b59","series-title":"2017 25th European Signal Processing Conference (EUSIPCO)","first-page":"1569","article-title":"Penalty learning for changepoint detection","author":"Truong","year":"2017"},{"key":"10.1016\/j.asoc.2023.109984_b60","article-title":"Statistical properties of sampled networks","volume":"73","author":"Lee","year":"2006","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.asoc.2023.109984_b61","doi-asserted-by":"crossref","DOI":"10.1063\/5.0076854","article-title":"Preserving the topological properties of complex networks in network sampling","volume":"32","author":"Chen","year":"2022","journal-title":"Chaos"},{"key":"10.1016\/j.asoc.2023.109984_b62","doi-asserted-by":"crossref","first-page":"4147","DOI":"10.1038\/s41598-022-07921-x","article-title":"A sampling\u2013guided unsupervised learning method to capture percolation in complex networks","volume":"12","author":"Mimar","year":"2022","journal-title":"Sci. Rep."},{"key":"10.1016\/j.asoc.2023.109984_b63","series-title":"Fundamentals of 5G mobile networks","first-page":"1","author":"Rodriguez","year":"2015"},{"key":"10.1016\/j.asoc.2023.109984_b64","series-title":"rpy2 - r in python","year":"2022"},{"key":"10.1016\/j.asoc.2023.109984_b65","series-title":"SciPy python library","year":"2022"},{"key":"10.1016\/j.asoc.2023.109984_b66","series-title":"Numpy python library","year":"2022"},{"key":"10.1016\/j.asoc.2023.109984_b67","series-title":"Changepoint package for R programming language","year":"2022"},{"key":"10.1016\/j.asoc.2023.109984_b68","series-title":"Bayesian Online Changepoint Detection package for R programming language","year":"2022"},{"key":"10.1016\/j.asoc.2023.109984_b69","series-title":"Appendix - analysis of stability of changepoint detection","year":"2022"},{"issue":"1","key":"10.1016\/j.asoc.2023.109984_b70","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1109\/MCI.2017.2773824","article-title":"Machine learning for performance prediction in mobile cellular networks","volume":"13","author":"Riihijarvi","year":"2018","journal-title":"IEEE Comput. Intell. Mag."},{"issue":"6","key":"10.1016\/j.asoc.2023.109984_b71","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1109\/MNET.001.2000031","article-title":"Modeling and abstraction of network and environment states using deep learning","volume":"34","author":"Mwanje","year":"2020","journal-title":"IEEE Netw."},{"key":"10.1016\/j.asoc.2023.109984_b72","series-title":"Intent-driven network and service management: Definitions, modeling and implementation","author":"Mwanje","year":"2022"},{"issue":"2","key":"10.1016\/j.asoc.2023.109984_b73","doi-asserted-by":"crossref","first-page":"1988","DOI":"10.1109\/COMST.2018.2883147","article-title":"Towards the deployment of machine learning solutions in network traffic classification: A systematic survey","volume":"21","author":"Pacheco","year":"2018","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"10.1016\/j.asoc.2023.109984_b74","doi-asserted-by":"crossref","first-page":"35606","DOI":"10.1109\/ACCESS.2020.2975004","article-title":"A survey of online data-driven proactive 5G network optimisation using machine learning","volume":"8","author":"Ma","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.asoc.2023.109984_b75","doi-asserted-by":"crossref","unstructured":"A. Vulpe, M. Idu, D. Gheorghe, A. Martian, F. Octavian, ML-based Analytics Framework for beyond 5G Mobile Communication Systems, in: Proc. 2020 28th Telecommunications Forum (TELFOR), 2020, http:\/\/dx.doi.org\/10.1109\/TELFOR51502.2020.9306534.","DOI":"10.1109\/TELFOR51502.2020.9306534"},{"key":"10.1016\/j.asoc.2023.109984_b76","doi-asserted-by":"crossref","unstructured":"B. Zeng, Y. Zhong, X. Niu, A Data-Driven Performance Prediction Approach for Cellular Network Parameter Setting via Factorization Machine, in: Proc. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), 2020, http:\/\/dx.doi.org\/10.1109\/ICDCS47774.2020.00172.","DOI":"10.1109\/ICDCS47774.2020.00172"},{"key":"10.1016\/j.asoc.2023.109984_b77","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109380","article-title":"Statistical Drift Detection Ensemble for batch processing of data streams","volume":"252","author":"Komorniczak","year":"2022","journal-title":"Knowl.-Based Syst."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623000029?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494623000029?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T03:39:56Z","timestamp":1716608396000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494623000029"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":77,"alternative-id":["S1568494623000029"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2023.109984","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"5G\/5G+ network management employing AI-based continuous deployment","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2023.109984","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109984"}}