{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T08:22:38Z","timestamp":1720513358015},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,11,19]],"date-time":"2022-11-19T00:00:00Z","timestamp":1668816000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100005632","name":"Narodowe Centrum Bada\u0144 i Rozwoju","doi-asserted-by":"publisher","award":["0092\/L-11\/2019"],"id":[{"id":"10.13039\/501100005632","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.asoc.2022.109837","type":"journal-article","created":{"date-parts":[[2022,11,24]],"date-time":"2022-11-24T16:43:48Z","timestamp":1669308228000},"page":"109837","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Ultrasmall fully-convolution GVA-net for point cloud processing"],"prefix":"10.1016","volume":"132","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5632-9484","authenticated-orcid":false,"given":"Jakub","family":"Walczak","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7168-3019","authenticated-orcid":false,"given":"Patryk","family":"Najgebauer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3786-7225","authenticated-orcid":false,"given":"Adam","family":"Wojciechowski","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9592-262X","authenticated-orcid":false,"given":"Rafa\u0142","family":"Scherer","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"12","key":"10.1016\/j.asoc.2022.109837_b1","doi-asserted-by":"crossref","first-page":"4332","DOI":"10.3390\/s18124332","article-title":"Deformation analysis of a composite bridge during proof loading using point cloud processing","volume":"18","author":"Ziolkowski","year":"2018","journal-title":"Sensors"},{"issue":"12","key":"10.1016\/j.asoc.2022.109837_b2","doi-asserted-by":"crossref","first-page":"7032","DOI":"10.1109\/TGRS.2017.2738439","article-title":"Topologically aware building rooftop reconstruction from airborne laser scanning point clouds","volume":"55","author":"Chen","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sensing"},{"key":"10.1016\/j.asoc.2022.109837_b3","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.isprsjprs.2021.08.019","article-title":"LidarCSNet: A deep convolutional compressive sensing reconstruction framework for 3D airborne lidar point cloud","volume":"180","author":"Shinde","year":"2021","journal-title":"ISPRS J. Photogram. Remote Sens."},{"key":"10.1016\/j.asoc.2022.109837_b4","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.isprsjprs.2017.03.001","article-title":"Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning","volume":"140","author":"Vetrivel","year":"2018","journal-title":"ISPRS J. Photogram. Remote Sens."},{"key":"10.1016\/j.asoc.2022.109837_b5","doi-asserted-by":"crossref","unstructured":"J. Zhang, G. Liu, D. Ding, Z. Ma, Transformer and Upsampling-Based Point Cloud Compression, in: Proceedings of the 1st International Workshop on Advances in Point Cloud Compression, Processing and Analysis, 2022, pp. 33\u201339.","DOI":"10.1145\/3552457.3555731"},{"issue":"4","key":"10.1016\/j.asoc.2022.109837_b6","doi-asserted-by":"crossref","first-page":"649","DOI":"10.3390\/electronics9040649","article-title":"A 3D shape recognition method using hybrid deep learning network CNN\u2014SVM","volume":"9","author":"Hoang","year":"2020","journal-title":"Electronics"},{"key":"10.1016\/j.asoc.2022.109837_b7","doi-asserted-by":"crossref","unstructured":"H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks for 3D shape recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 945\u2013953.","DOI":"10.1109\/ICCV.2015.114"},{"key":"10.1016\/j.asoc.2022.109837_b8","series-title":"2017 International Conference on 3D Vision (3DV)","first-page":"566","article-title":"3D object classification via spherical projections","author":"Cao","year":"2017"},{"issue":"6","key":"10.1016\/j.asoc.2022.109837_b9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2980179.2980238","article-title":"A scalable active framework for region annotation in 3d shape collections","volume":"35","author":"Yi","year":"2016","journal-title":"ACM Trans. Graph."},{"issue":"5","key":"10.1016\/j.asoc.2022.109837_b10","doi-asserted-by":"crossref","first-page":"213","DOI":"10.3390\/ijgi8050213","article-title":"Voxel-based 3D point cloud semantic segmentation: unsupervised geometric and relationship featuring vs deep learning methods","volume":"8","author":"Poux","year":"2019","journal-title":"ISPRS Int. J. Geo-Inform."},{"issue":"4","key":"10.1016\/j.asoc.2022.109837_b11","first-page":"1","article-title":"O-cnn: Octree-based convolutional neural networks for 3D shape analysis","volume":"36","author":"Wang","year":"2017","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"10.1016\/j.asoc.2022.109837_b12","doi-asserted-by":"crossref","unstructured":"R. Klokov, V. Lempitsky, Escape from cells: Deep kd-networks for the recognition of 3d point cloud models, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 863\u2013872.","DOI":"10.1109\/ICCV.2017.99"},{"key":"10.1016\/j.asoc.2022.109837_b13","doi-asserted-by":"crossref","unstructured":"Y. Feng, Y. Feng, H. You, X. Zhao, Y. Gao, Meshnet: Mesh neural network for 3d shape representation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, (01) 2019, pp. 8279\u20138286.","DOI":"10.1609\/aaai.v33i01.33018279"},{"key":"10.1016\/j.asoc.2022.109837_b14","doi-asserted-by":"crossref","first-page":"57566","DOI":"10.1109\/ACCESS.2020.2982196","article-title":"A review on deep learning approaches for 3D data representations in retrieval and classifications","volume":"8","author":"Gezawa","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.asoc.2022.109837_b15","unstructured":"C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Patter Recognition, 2017, pp. 652\u2013660."},{"key":"10.1016\/j.asoc.2022.109837_b16","series-title":"Deep sets","author":"Zaheer","year":"2017"},{"key":"10.1016\/j.asoc.2022.109837_b17","series-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","author":"Qi","year":"2017"},{"key":"10.1016\/j.asoc.2022.109837_b18","first-page":"820","article-title":"Pointcnn: Convolution on x-transformed points","volume":"31","author":"Li","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"5","key":"10.1016\/j.asoc.2022.109837_b19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3326362","article-title":"Dynamic graph cnn for learning on point clouds","volume":"38","author":"Wang","year":"2019","journal-title":"ACM Trans. Graphics"},{"key":"10.1016\/j.asoc.2022.109837_b20","series-title":"Linked dynamic graph cnn: Learning on point cloud via linking hierarchical features","author":"Zhang","year":"2019"},{"key":"10.1016\/j.asoc.2022.109837_b21","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.neucom.2020.10.086","article-title":"Pointvgg: Graph convolutional network with progressive aggregating features on point clouds","volume":"429","author":"Li","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2022.109837_b22","series-title":"Walk in the cloud: Learning curves for point clouds shape analysis","author":"Xiang","year":"2021"},{"key":"10.1016\/j.asoc.2022.109837_b23","unstructured":"Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao, 3d ShapeNets: A Deep Representation for Volumetric Shapes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1912\u20131920."},{"key":"10.1016\/j.asoc.2022.109837_b24","series-title":"2018 International Conference on Intelligent and Advanced System (ICIAS)","first-page":"1","article-title":"Contrasting convolutional neural network (CNN) with multi-layer perceptron (MLP) for big data analysis","author":"Botalb","year":"2018"},{"key":"10.1016\/j.asoc.2022.109837_b25","doi-asserted-by":"crossref","unstructured":"M. Joseph-Rivlin, A. Zvirin, R. Kimmel, Momen (e) t: Flavor the moments in learning to classify shapes, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision Workshops, 2019.","DOI":"10.1109\/ICCVW.2019.00503"},{"key":"10.1016\/j.asoc.2022.109837_b26","doi-asserted-by":"crossref","unstructured":"H. Zhao, L. Jiang, C.-W. Fu, J. Jia, Pointweb: Enhancing local neighborhood features for point cloud processing, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5565\u20135573.","DOI":"10.1109\/CVPR.2019.00571"},{"key":"10.1016\/j.asoc.2022.109837_b27","doi-asserted-by":"crossref","unstructured":"W. Wu, Z. Qi, L. Fuxin, PointConv: Deep Convolutional Networks on 3D Point Clouds, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9621\u20139630.","DOI":"10.1109\/CVPR.2019.00985"},{"key":"10.1016\/j.asoc.2022.109837_b28","doi-asserted-by":"crossref","unstructured":"H. Zhao, L. Jiang, J. Jia, P.H. Torr, V. Koltun, Point transformer, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 16259\u201316268.","DOI":"10.1109\/ICCV48922.2021.01595"},{"key":"10.1016\/j.asoc.2022.109837_b29","series-title":"PointMixer: MLP-mixer for point cloud understanding","author":"Choe","year":"2021"},{"key":"10.1016\/j.asoc.2022.109837_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.jvcir.2022.103639","article-title":"AS-Net: An attention-aware downsampling network for point clouds oriented to classification tasks","author":"Yang","year":"2022","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.asoc.2022.109837_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108887","article-title":"Decouple the object: Component-level semantic recognizer for point clouds classification","volume":"248","author":"Hu","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.asoc.2022.109837_b32","doi-asserted-by":"crossref","unstructured":"J. Chen, B. Kakillioglu, H. Ren, S. Velipasalar, Why Discard if You Can Recycle?: A Recycling Max Pooling Module for 3D Point Cloud Analysis, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 559\u2013567.","DOI":"10.1109\/CVPR52688.2022.00064"},{"key":"10.1016\/j.asoc.2022.109837_b33","series-title":"Exact spectral norm regularization for neural networks","author":"Johansson","year":"2022"},{"key":"10.1016\/j.asoc.2022.109837_b34","article-title":"Pointcutmix: Regularization strategy for point cloud classification","author":"Zhang","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2022.109837_b35","series-title":"International Conference on Computational Science","first-page":"229","article-title":"Vicinity-based abstraction: VA-DGCNN architecture for noisy 3D indoor object classification","author":"Walczak","year":"2021"},{"key":"10.1016\/j.asoc.2022.109837_b36","doi-asserted-by":"crossref","first-page":"16591","DOI":"10.1109\/ACCESS.2021.3053408","article-title":"Inet: Convolutional networks for biomedical image segmentation","volume":"9","author":"Weng","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.asoc.2022.109837_b37","series-title":"SGDR: Stochastic gradient descent with warm restarts","author":"Loshchilov","year":"2016"},{"issue":"3","key":"10.1016\/j.asoc.2022.109837_b38","doi-asserted-by":"crossref","first-page":"303","DOI":"10.2478\/fcds-2019-0016","article-title":"Implications of pooling strategies in convolutional neural networks: A deep insight","volume":"44","author":"Sharma","year":"2019","journal-title":"Found. Comput. Decision Sci.nces"},{"key":"10.1016\/j.asoc.2022.109837_b39","series-title":"Network in network","author":"Lin","year":"2013"},{"key":"10.1016\/j.asoc.2022.109837_b40","doi-asserted-by":"crossref","unstructured":"J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431\u20133440.","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"10.1016\/j.asoc.2022.109837_b41","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.asoc.2022.109837_b42","series-title":"International Conference on Machine Learning","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"Ioffe","year":"2015"},{"key":"10.1016\/j.asoc.2022.109837_b43","doi-asserted-by":"crossref","unstructured":"X. Li, S. Chen, X. Hu, J. Yang, Understanding the disharmony between dropout and batch normalization by variance shift, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2682\u20132690.","DOI":"10.1109\/CVPR.2019.00279"},{"key":"10.1016\/j.asoc.2022.109837_b44","first-page":"1","article-title":"Dropout vs. batch normalization: an empirical study of their impact to deep learning","author":"Garbin","year":"2020","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.asoc.2022.109837_b45","doi-asserted-by":"crossref","unstructured":"T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Doll\u00e1r, Focal loss for dense object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2980\u20132988.","DOI":"10.1109\/ICCV.2017.324"},{"key":"10.1016\/j.asoc.2022.109837_b46","doi-asserted-by":"crossref","unstructured":"M. Berman, A.R. Triki, M.B. Blaschko, The Lov\u00e1sz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4413\u20134421.","DOI":"10.1109\/CVPR.2018.00464"},{"key":"10.1016\/j.asoc.2022.109837_b47","series-title":"2.1.4. Results reproducibility","year":"2021"},{"issue":"2","key":"10.1016\/j.asoc.2022.109837_b48","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1109\/TPAMI.1979.4766909","article-title":"A cluster separation measure","author":"Davies","year":"1979","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.asoc.2022.109837_b49","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/0377-0427(87)90125-7","article-title":"Silhouettes: a graphical aid to the interpretation and validation of cluster analysis","volume":"20","author":"Rousseeuw","year":"1987","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.asoc.2022.109837_b50","series-title":"2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)","first-page":"827","article-title":"An internal cluster validity index using a distance-based separability measure","author":"Guan","year":"2020"},{"key":"10.1016\/j.asoc.2022.109837_b51","article-title":"Deep learning for 3d point clouds: A survey","author":"Guo","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.asoc.2022.109837_b52","series-title":"Deep learning based 3D segmentation: A survey","author":"He","year":"2021"}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494622008869?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494622008869?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T03:35:24Z","timestamp":1716608124000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494622008869"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":52,"alternative-id":["S1568494622008869"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2022.109837","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Ultrasmall fully-convolution GVA-net for point cloud processing","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2022.109837","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"109837"}}