{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:44:51Z","timestamp":1732041891856},"reference-count":124,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,9,23]],"date-time":"2022-09-23T00:00:00Z","timestamp":1663891200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004837","name":"Ministerio de Ciencia e Innovaci\u00f3n","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004837","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014440","name":"Government of Spain Ministry of Science and Innovation","doi-asserted-by":"publisher","award":["PID2020-115454GB-C21"],"id":[{"id":"10.13039\/100014440","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.asoc.2022.109654","type":"journal-article","created":{"date-parts":[[2022,9,26]],"date-time":"2022-09-26T16:51:35Z","timestamp":1664211095000},"page":"109654","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Hybridizing machine learning with metaheuristics for preventing convergence failures in mechanical models based on compression field theories"],"prefix":"10.1016","volume":"130","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2336-3931","authenticated-orcid":false,"given":"Alejandro M.","family":"Hern\u00e1ndez-D\u00edaz","sequence":"first","affiliation":[]},{"given":"Jorge","family":"P\u00e9rez-Aracil","sequence":"additional","affiliation":[]},{"given":"David","family":"Casillas-Perez","sequence":"additional","affiliation":[]},{"given":"Emiliano","family":"Pereira","sequence":"additional","affiliation":[]},{"given":"Sancho","family":"Salcedo-Sanz","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2022.109654_b1","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.apm.2021.09.030","article-title":"Non-probabilistic optimization model of engineering structures with dependent interval variables","volume":"102","author":"Guan","year":"2022","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.asoc.2022.109654_b2","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.apm.2021.03.020","article-title":"A new hybrid optimization ensemble learning approach for carbon price forecasting","volume":"97","author":"Sun","year":"2021","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.asoc.2022.109654_b3","doi-asserted-by":"crossref","first-page":"826","DOI":"10.1016\/j.asoc.2018.07.009","article-title":"Multi-objective optimal design of submerged arches using extreme learning machine and evolutionary algorithms","volume":"71","author":"Hern\u00e1ndez-D\u00edaz","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2022.109654_b4","doi-asserted-by":"crossref","first-page":"589","DOI":"10.4028\/www.scientific.net\/KEM.774.589","article-title":"Fatigue assessment of a slender footbridge based on an updated finite element model","volume":"774","author":"P\u00e9rez-Aracil","year":"2018","journal-title":"Key Eng. Mater."},{"issue":"5","key":"10.1016\/j.asoc.2022.109654_b5","doi-asserted-by":"crossref","DOI":"10.1002\/cmm4.1057","article-title":"Buckling design of submerged arches via shape parameterization","volume":"1","author":"Hern\u00e1ndez-D\u00edaz","year":"2019","journal-title":"Comput. Math. Methods"},{"key":"10.1016\/j.asoc.2022.109654_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.advengsoft.2014.01.002","article-title":"Colliding bodies optimization method for optimum design of truss structures with continuous variables","volume":"70","author":"Kaveh","year":"2014","journal-title":"Adv. Eng. Softw."},{"issue":"7","key":"10.1016\/j.asoc.2022.109654_b7","doi-asserted-by":"crossref","first-page":"1374","DOI":"10.3390\/app9071374","article-title":"Effect of Vinyl flooring on the modal properties of a steel footbridge","volume":"9","author":"Jim\u00e9nez-Alonso","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.asoc.2022.109654_b8","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.cpc.2016.07.012","article-title":"Enhanced calculation of eigen-stress field and elastic energy in atomistic interdiffusion of alloys","volume":"211","author":"Cecilia","year":"2017","journal-title":"Comput. Phys. Comm."},{"key":"10.1016\/j.asoc.2022.109654_b9","article-title":"Machine learning prediction of mechanical properties of concrete: Critical review","volume":"260","author":"Chaabene","year":"2020","journal-title":"Constr. Build. Mater."},{"key":"10.1016\/j.asoc.2022.109654_b10","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.advengsoft.2017.09.004","article-title":"Predicting compressive strength of lightweight foamed concrete using extreme learning machine model","volume":"115","author":"Yaseen","year":"2018","journal-title":"Adv. Eng. Softw."},{"key":"10.1016\/j.asoc.2022.109654_b11","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.aei.2018.05.004","article-title":"Detecting healthy concrete surfaces","volume":"37","author":"H\u00fcthwohl","year":"2018","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.asoc.2022.109654_b12","doi-asserted-by":"crossref","first-page":"792","DOI":"10.1016\/j.apm.2019.10.007","article-title":"Machine learning aided static structural reliability analysis for functionally graded frame structures","volume":"78","author":"Wang","year":"2020","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.asoc.2022.109654_b13","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1016\/j.cma.2017.11.004","article-title":"Stiffness optimization of non-linear elastic structures","volume":"330","author":"Wallin","year":"2018","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"10.1016\/j.asoc.2022.109654_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.advengsoft.2020.102965","article-title":"Non-linear dynamic analysis of reinforced concrete structures with hybrid mixed stress finite elements","volume":"153","author":"Arruda","year":"2021","journal-title":"Adv. Eng. Softw."},{"issue":"2","key":"10.1016\/j.asoc.2022.109654_b15","first-page":"219","article-title":"The modified compression-field theory for reinforced concrete elements subjected to shear","volume":"83","author":"Vecchio","year":"1986","journal-title":"ACI J."},{"issue":"4","key":"10.1016\/j.asoc.2022.109654_b16","first-page":"465","article-title":"Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete","volume":"91","author":"Belarbi","year":"1994","journal-title":"Struct. J."},{"key":"10.1016\/j.asoc.2022.109654_b17","first-page":"123","article-title":"Refinements to compression field theory with application to wall-type structures","volume":"265","author":"Gil-Mart\u00edn","year":"2009","journal-title":"Amer. Concr. Inst. Spec. Publ."},{"issue":"2","key":"10.1016\/j.asoc.2022.109654_b18","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1007\/s40069-016-0140-0","article-title":"Computing the refined compression field theory","volume":"10","author":"Hern\u00e1ndez-D\u00edaz","year":"2016","journal-title":"Int. J. Concr. Struct. Mater."},{"key":"10.1016\/j.asoc.2022.109654_b19","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.asoc.2017.03.037","article-title":"Evolutionary strategies as applied to shear strain effects in reinforced concrete beams","volume":"57","author":"Espa\u00f1a","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2022.109654_b20","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.engstruct.2012.04.010","article-title":"Analysis of the equal principal angles assumption in the shear design of reinforced concrete members","volume":"42","author":"Hern\u00e1ndez-D\u0131","year":"2012","journal-title":"Eng. Struct."},{"key":"10.1016\/j.asoc.2022.109654_b21","series-title":"Eurocode 2: Design of Concrete Structures-Part 1\u20131: General Rules and Rules for Buildings","author":"Code","year":"2005"},{"key":"10.1016\/j.asoc.2022.109654_b22","first-page":"318","article-title":"Model code 2010\u2014First complete draft","volume":"55","author":"Du\u00a0B\u00e9ton","year":"2010","journal-title":"FIB Bull."},{"issue":"9","key":"10.1016\/j.asoc.2022.109654_b23","doi-asserted-by":"crossref","first-page":"1070","DOI":"10.1061\/(ASCE)0733-9445(2000)126:9(1070)","article-title":"Disturbed stress field model for reinforced concrete: formulation","volume":"126","author":"Vecchio","year":"2000","journal-title":"J. Struct. Eng."},{"key":"10.1016\/j.asoc.2022.109654_b24","series-title":"Prestressed Concrete Structures","author":"Collins","year":"1991"},{"key":"10.1016\/j.asoc.2022.109654_b25","series-title":"Methods for Solving Systems of Nonlinear Equations","author":"Rheinboldt","year":"1974"},{"issue":"1\u20132","key":"10.1016\/j.asoc.2022.109654_b26","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/S0377-0427(00)00435-0","article-title":"The theory of Newton\u2019s method","volume":"124","author":"Gal\u00e1ntai","year":"2000","journal-title":"J. Comput. Appl. Math."},{"issue":"1\u20133","key":"10.1016\/j.asoc.2022.109654_b27","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/0045-7949(81)90110-3","article-title":"Computational strategies for the solution of large nonlinear problems via quasi-Newton methods","volume":"13","author":"Geradin","year":"1981","journal-title":"Comput. Struct."},{"issue":"3","key":"10.1016\/j.asoc.2022.109654_b28","doi-asserted-by":"crossref","first-page":"2397","DOI":"10.1016\/j.eswa.2011.08.087","article-title":"Comparing the performance of neural networks developed by using Levenberg\u2013Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process","volume":"39","author":"Mukherjee","year":"2012","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2022.109654_b29","series-title":"European Congress on Computational Methods in Applied Sciences and Engineering","first-page":"332","article-title":"On the numerical treatment of nonlinear flexible multibody systems with the use of quasi-newton methods","author":"Bul\u00edn","year":"2019"},{"issue":"2","key":"10.1016\/j.asoc.2022.109654_b30","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1016\/j.cam.2007.11.018","article-title":"Some higher-order modifications of Newton\u2019s method for solving nonlinear equations","volume":"222","author":"Ham","year":"2008","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.asoc.2022.109654_b31","doi-asserted-by":"crossref","unstructured":"C. Guo, Y. Gao, C. Xia, Improved Newton Iteration Method and Convergence Order Analysis, in: Proceedings of the 2020 4th International Conference on Digital Signal Processing, 2020, pp. 29\u201332.","DOI":"10.1145\/3408127.3408197"},{"key":"10.1016\/j.asoc.2022.109654_b32","series-title":"The 16th IET International Conference on AC and DC Power Transmission, Vol. 2020","first-page":"1804","article-title":"A new combination algorithm based on higher-order Newton and simplified Newton method","author":"Wei","year":"2020"},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b33","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1007\/s12190-020-01393-w","article-title":"A global Newton-type scheme based on a simplified Newton-type approach","volume":"65","author":"Amrein","year":"2021","journal-title":"J. Appl. Math. Comput."},{"key":"10.1016\/j.asoc.2022.109654_b34","series-title":"Numerical Computations: Theory and Algorithms NUMTA 2019","first-page":"109","article-title":"A gradient-based globalization strategy for the Newton method","author":"Viola","year":"2019"},{"issue":"14","key":"10.1016\/j.asoc.2022.109654_b35","doi-asserted-by":"crossref","first-page":"8042","DOI":"10.1002\/mma.5994","article-title":"Extending the choice of starting points for Newton\u2019s method","volume":"43","author":"Argyros","year":"2020","journal-title":"Math. Methods Appl. Sci."},{"issue":"6","key":"10.1016\/j.asoc.2022.109654_b36","doi-asserted-by":"crossref","first-page":"1272","DOI":"10.1080\/10556788.2019.1669154","article-title":"New versions of Newton method: step-size choice, convergence domain and under-determined equations","volume":"35","author":"Polyak","year":"2020","journal-title":"Optim. Methods Softw."},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b37","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1007\/s10107-020-01496-z","article-title":"Unit stepsize for the Newton method close to critical solutions","volume":"187","author":"Fischer","year":"2021","journal-title":"Math. Program."},{"key":"10.1016\/j.asoc.2022.109654_b38","doi-asserted-by":"crossref","DOI":"10.1155\/2020\/7986351","article-title":"A smoothing newton method with a mixed line search for monotone weighted complementarity problems","volume":"2020","author":"Jiang","year":"2020","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.asoc.2022.109654_b39","doi-asserted-by":"crossref","unstructured":"W. Peng, S. Nadarajah, Truncated-Newton method with adjoint-based Hessian-vector product for aerodynamic shape optimization problems, in: AIAA Scitech 2020 Forum, 2020, p. 1293.","DOI":"10.2514\/6.2020-1293"},{"key":"10.1016\/j.asoc.2022.109654_b40","doi-asserted-by":"crossref","unstructured":"M. Millidere, U. Karaman, S. Uslu, C. Kasnakoglu, T. \u00c7imen, Newton-raphson methods in aircraft trim: A comparative study, in: AIAA Aviation 2020 Forum, 2020, p. 3198.","DOI":"10.2514\/6.2020-3198"},{"issue":"8","key":"10.1016\/j.asoc.2022.109654_b41","doi-asserted-by":"crossref","first-page":"2581","DOI":"10.1002\/fld.4989","article-title":"An efficient quasi-Newton method for three-dimensional steady free surface flow","volume":"93","author":"Demeester","year":"2021","journal-title":"Internat. J. Numer. Methods Fluids"},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b42","first-page":"91","article-title":"Basins of attraction and critical curves for Newton-type methods in a phase equilibrium problem","volume":"23","author":"Platt","year":"2020","journal-title":"Int. J. Comput. Sci. Eng."},{"key":"10.1016\/j.asoc.2022.109654_b43","article-title":"A quasi-newton like method via modified rational approximation model for solving system of nonlinear equation","author":"Kamfa","year":"2020","journal-title":"J. Adv. Res. Dyn. Control Syst."},{"issue":"2\u20133","key":"10.1016\/j.asoc.2022.109654_b44","doi-asserted-by":"crossref","first-page":"208","DOI":"10.15407\/pp2020.02-03.208","article-title":"Hybrid algorithm Newton method for solving systems of nonlinear equations with block Jacobi matrix","author":"Khimich","year":"2020","journal-title":"Probl. Program."},{"key":"10.1016\/j.asoc.2022.109654_b45","article-title":"A class of computationally efficient Newton-like methods with frozen inverse operator for nonlinear systems","author":"Sharma","year":"2021","journal-title":"Int. J. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.asoc.2022.109654_b46","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2020.113501","article-title":"An ellipsoidal Newton\u2019s iteration method of nonlinear structural systems with uncertain-but-bounded parameters","volume":"373","author":"Qiu","year":"2021","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"issue":"3","key":"10.1016\/j.asoc.2022.109654_b47","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1007\/BF02125404","article-title":"Hybrid genetic algorithms for bin-packing and related problems","volume":"63","author":"Reeves","year":"1996","journal-title":"Ann. Oper. Res."},{"issue":"2","key":"10.1016\/j.asoc.2022.109654_b48","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/s10898-004-2700-0","article-title":"Local optimization method with global multidimensional search","volume":"32","author":"Bagirov","year":"2005","journal-title":"J. Global Optim."},{"key":"10.1016\/j.asoc.2022.109654_b49","series-title":"International Conference on Computer Science, Applied Mathematics and Applications","first-page":"64","article-title":"A combination of CMAES-APOP algorithm and quasi-newton method","author":"Nguyen","year":"2019"},{"key":"10.1016\/j.asoc.2022.109654_b50","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.eswa.2018.09.033","article-title":"Multiobjective Hooke\u2013Jeeves algorithm with a stochastic Newton\u2013Raphson-like step-size method","volume":"117","author":"Altinoz","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2022.109654_b51","doi-asserted-by":"crossref","first-page":"95791","DOI":"10.1109\/ACCESS.2021.3094471","article-title":"A hybrid approach for solving systems of nonlinear equations using harris hawks optimization and newton\u2019s method","volume":"9","author":"Sihwail","year":"2021","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.asoc.2022.109654_b52","doi-asserted-by":"crossref","first-page":"2033","DOI":"10.3390\/s21062033","article-title":"A hybrid newton\u2013raphson and particle swarm optimization method for target motion analysis by batch processing","volume":"21","author":"Oh","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.asoc.2022.109654_b53","series-title":"2020 IEEE 5th International Conference on Signal and Image Processing","first-page":"557","article-title":"Hybrid algorithm based on newton iteration and least square method for sound source positioning","author":"Li","year":"2020"},{"issue":"66","key":"10.1016\/j.asoc.2022.109654_b54","first-page":"1","article-title":"Approximate newton methods","volume":"22","author":"Ye","year":"2021","journal-title":"J. Mach. Learn. Res."},{"issue":"8","key":"10.1016\/j.asoc.2022.109654_b55","doi-asserted-by":"crossref","first-page":"1766","DOI":"10.1162\/NECO_a_00751","article-title":"Subsampled Hessian Newton methods for supervised learning","volume":"27","author":"Wang","year":"2015","journal-title":"Neural Comput."},{"issue":"6","key":"10.1016\/j.asoc.2022.109654_b56","doi-asserted-by":"crossref","first-page":"1673","DOI":"10.1162\/neco_a_01088","article-title":"Distributed newton methods for deep neural networks","volume":"30","author":"Wang","year":"2018","journal-title":"Neural Comput."},{"key":"10.1016\/j.asoc.2022.109654_b57","series-title":"Deep Learning Applications","first-page":"9","article-title":"Quasi-Newton optimization methods for deep learning applications","author":"Rafati","year":"2020"},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b58","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1137\/1019005","article-title":"Quasi-Newton methods, motivation and theory","volume":"19","author":"Dennis","year":"1977","journal-title":"SIAM Rev."},{"key":"10.1016\/j.asoc.2022.109654_b59","unstructured":"J. Martens, et al., Deep learning via hessian-free optimization, in: ICML, Vol. 27, 2010, pp. 735\u2013742."},{"key":"10.1016\/j.asoc.2022.109654_b60","series-title":"Artificial Intelligence and Statistics","first-page":"436","article-title":"A stochastic quasi-Newton method for online convex optimization","author":"Schraudolph","year":"2007"},{"issue":"4","key":"10.1016\/j.asoc.2022.109654_b61","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1587\/nolta.8.289","article-title":"A novel quasi-Newton-based optimization for neural network training incorporating Nesterov\u2019s accelerated gradient","volume":"8","author":"Ninomiya","year":"2017","journal-title":"Nonlinear Theory Appl. IEICE"},{"key":"10.1016\/j.asoc.2022.109654_b62","series-title":"A stochastic quasi-newton method with nesterov\u2019s accelerated gradient","author":"Indrapriyadarsini","year":"2019"},{"key":"10.1016\/j.asoc.2022.109654_b63","series-title":"Practical quasi-newton methods for training deep neural networks","author":"Goldfarb","year":"2020"},{"issue":"10","key":"10.1016\/j.asoc.2022.109654_b64","doi-asserted-by":"crossref","first-page":"12189","DOI":"10.1016\/j.eswa.2011.03.073","article-title":"A two-stage algorithm integrating genetic algorithm and modified Newton method for neural network training in engineering systems","volume":"38","author":"Su","year":"2011","journal-title":"Expert Syst. Appl."},{"issue":"5","key":"10.1016\/j.asoc.2022.109654_b65","doi-asserted-by":"crossref","first-page":"3177","DOI":"10.1007\/s10462-019-09759-8","article-title":"An integrating genetic algorithm and modified Newton method for tracking control and vibration suppression","volume":"53","author":"Chen","year":"2020","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.asoc.2022.109654_b66","series-title":"The Design and Testing to Failure of a Prestressed Concrete Beam Loaded in Flexure and Shear","author":"Abersman","year":"1973"},{"key":"10.1016\/j.asoc.2022.109654_b67","series-title":"2016 IEEE Congress on Evolutionary Computation","first-page":"3574","article-title":"A coral reefs optimization algorithm with substrate layers and local search for large scale global optimization","author":"Salcedo-Sanz","year":"2016"},{"key":"10.1016\/j.asoc.2022.109654_b68","doi-asserted-by":"crossref","first-page":"215057","DOI":"10.1109\/ACCESS.2020.3040479","article-title":"Submerged arches optimal design with a multi-method ensemble meta-heuristic approach","volume":"8","author":"Perez-Aracil","year":"2020","journal-title":"IEEE Access"},{"issue":"13","key":"10.1016\/j.asoc.2022.109654_b69","doi-asserted-by":"crossref","first-page":"5862","DOI":"10.3390\/app11135862","article-title":"Optimum shape design of geometrically nonlinear submerged arches using the coral reefs optimization with substrate layers algorithm","volume":"11","author":"P\u00e9rez-Aracil","year":"2021","journal-title":"Appl. Sci."},{"key":"10.1016\/j.asoc.2022.109654_b70","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2021.100958","article-title":"Memetic coral reefs optimization algorithms for optimal geometrical design of submerged arches","volume":"67","author":"P\u00e9rez-Aracil","year":"2021","journal-title":"Swarm Evol. Comput."},{"issue":"11","key":"10.1016\/j.asoc.2022.109654_b71","doi-asserted-by":"crossref","first-page":"4287","DOI":"10.1007\/s00500-016-2295-7","article-title":"A novel Coral Reefs Optimization algorithm with substrate layers for optimal battery scheduling optimization in micro-grids","volume":"20","author":"Salcedo-Sanz","year":"2016","journal-title":"Soft Comput."},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b72","doi-asserted-by":"crossref","first-page":"169","DOI":"10.3390\/su11010169","article-title":"Optimal microgrid topology design and siting of distributed generation sources using a multi-objective substrate layer coral reefs optimization algorithm","volume":"11","author":"Jim\u00e9nez-Fern\u00e1ndez","year":"2019","journal-title":"Sustainability"},{"key":"10.1016\/j.asoc.2022.109654_b73","series-title":"2019 IEEE International Conference on Systems, Man and Cybernetics","first-page":"2001","article-title":"A co-evolution coral reefs optimization approach for multi-objective vehicle routing problem with time windows","author":"Lin","year":"2019"},{"issue":"11","key":"10.1016\/j.asoc.2022.109654_b74","doi-asserted-by":"crossref","first-page":"4688","DOI":"10.1109\/TSMC.2018.2859429","article-title":"A novel diagonal class entropy-based multilevel image thresholding using coral reef optimization","volume":"50","author":"Agrawal","year":"2018","journal-title":"IEEE Trans. Syst. Man Cybern. A"},{"key":"10.1016\/j.asoc.2022.109654_b75","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.swevo.2018.03.003","article-title":"Coral reef optimization with substrate layers for medical image registration","volume":"42","author":"Bermejo","year":"2018","journal-title":"Swarm Evol. Comput."},{"issue":"23","key":"10.1016\/j.asoc.2022.109654_b76","doi-asserted-by":"crossref","first-page":"12621","DOI":"10.1007\/s00500-019-03815-9","article-title":"A Coral Reefs Optimization algorithm with substrate layer for robust Wi-Fi channel assignment","volume":"23","author":"Camacho-G\u00f3mez","year":"2019","journal-title":"Soft Comput."},{"key":"10.1016\/j.asoc.2022.109654_b77","doi-asserted-by":"crossref","first-page":"20632","DOI":"10.1109\/ACCESS.2019.2895975","article-title":"Joint resource allocation and power control algorithm for cooperative D2D heterogeneous networks","volume":"7","author":"Gao","year":"2019","journal-title":"IEEE Access"},{"issue":"19","key":"10.1016\/j.asoc.2022.109654_b78","doi-asserted-by":"crossref","first-page":"9327","DOI":"10.1007\/s00500-019-03950-3","article-title":"A high-performance parallel coral reef optimization for data clustering","volume":"23","author":"Tsai","year":"2019","journal-title":"Soft Comput."},{"issue":"7","key":"10.1016\/j.asoc.2022.109654_b79","doi-asserted-by":"crossref","first-page":"1982","DOI":"10.3390\/s18071982","article-title":"Optimal design of a planar textile antenna for industrial scientific medical (ISM) 2.4 GHz wireless body area networks (WBAN) with the CRO-SL algorithm","volume":"18","author":"S\u00e1nchez-Montero","year":"2018","journal-title":"Sensors"},{"key":"10.1016\/j.asoc.2022.109654_b80","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.chemolab.2018.11.010","article-title":"Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets","volume":"184","author":"Yan","year":"2019","journal-title":"Chemometr. Intell. Lab. Syst."},{"key":"10.1016\/j.asoc.2022.109654_b81","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.gloplacha.2019.04.013","article-title":"Near-optimal selection of representative measuring points for robust temperature field reconstruction with the CRO-SL and analogue methods","volume":"178","author":"Salcedo-Sanz","year":"2019","journal-title":"Glob. Planet. Change"},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b82","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-64459-6","article-title":"Selection of optimal proxy locations for temperature field reconstructions using evolutionary algorithms","volume":"10","author":"Jaume-Santero","year":"2020","journal-title":"Sci. Rep."},{"key":"10.1016\/j.asoc.2022.109654_b83","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.jsv.2017.01.019","article-title":"Structures vibration control via tuned mass dampers using a co-evolution coral reefs optimization algorithm","volume":"393","author":"Salcedo-Sanz","year":"2017","journal-title":"J. Sound Vib."},{"key":"10.1016\/j.asoc.2022.109654_b84","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.engstruct.2017.12.002","article-title":"Active vibration control design using the Coral Reefs Optimization with Substrate Layer algorithm","volume":"157","author":"Camacho-G\u00f3mez","year":"2018","journal-title":"Eng. Struct."},{"issue":"4","key":"10.1016\/j.asoc.2022.109654_b85","doi-asserted-by":"crossref","first-page":"108","DOI":"10.3390\/act9040108","article-title":"Vibration isolation and alignment of multiple platforms on a non-rigid supporting structure","volume":"9","author":"P\u00e9rez-Aracil","year":"2020","journal-title":"Actuators"},{"key":"10.1016\/j.asoc.2022.109654_b86","doi-asserted-by":"crossref","DOI":"10.1007\/s11012-021-01342-2","article-title":"Passive and active vibration isolation under isolator-structure interaction: application to vertical excitations","author":"P\u00e9rez-Aracil","year":"2021","journal-title":"Meccanica"},{"issue":"13","key":"10.1016\/j.asoc.2022.109654_b87","doi-asserted-by":"crossref","first-page":"1526","DOI":"10.3390\/math9131526","article-title":"Eliminating stick-slip vibrations in drill-strings with a dual-loop control strategy optimised by the CRO-SL algorithm","volume":"9","author":"P\u00e9rez-Aracil","year":"2021","journal-title":"Mathematics"},{"key":"10.1016\/j.asoc.2022.109654_b88","doi-asserted-by":"crossref","DOI":"10.1155\/2014\/739768","article-title":"The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems","volume":"2014","author":"Salcedo-Sanz","year":"2014","journal-title":"Sci. World J."},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b89","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13748-016-0104-2","article-title":"A review on the coral reefs optimization algorithm: new development lines and current applications","volume":"6","author":"Salcedo-Sanz","year":"2017","journal-title":"Prog. Artif. Intell."},{"key":"10.1016\/j.asoc.2022.109654_b90","series-title":"Introduction to Evolutionary Computing, Vol. 53","author":"Eiben","year":"2003"},{"issue":"4598","key":"10.1016\/j.asoc.2022.109654_b91","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1126\/science.220.4598.671","article-title":"Optimization by simulated annealing","volume":"220","author":"Kirkpatrick","year":"1983","journal-title":"Science"},{"issue":"3","key":"10.1016\/j.asoc.2022.109654_b92","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1504\/IJBIC.2017.086698","article-title":"New coral reefs-based approaches for the model type selection problem: a novel method to predict a nation\u2019s future energy demand","volume":"10","author":"Salcedo-Sanz","year":"2017","journal-title":"Int. J. Bio-Inspired Comput."},{"key":"10.1016\/j.asoc.2022.109654_b93","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1016\/j.swevo.2018.08.015","article-title":"Ensemble strategies for population-based optimization algorithms\u2013A survey","volume":"44","author":"Wu","year":"2019","journal-title":"Swarm Evol. Comput."},{"issue":"2","key":"10.1016\/j.asoc.2022.109654_b94","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1177\/003754970107600201","article-title":"A new heuristic optimization algorithm: harmony search","volume":"76","author":"Geem","year":"2001","journal-title":"Simulation"},{"issue":"4","key":"10.1016\/j.asoc.2022.109654_b95","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1023\/A:1008202821328","article-title":"Differential evolution\u2013a simple and efficient heuristic for global optimization over continuous spaces","volume":"11","author":"Storn","year":"1997","journal-title":"J. Global Optim."},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b96","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"issue":"4","key":"10.1016\/j.asoc.2022.109654_b97","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1017\/S0269888998214044","article-title":"Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994","volume":"13","author":"Kubat","year":"1999","journal-title":"Knowl. Eng. Rev."},{"key":"10.1016\/j.asoc.2022.109654_b98","series-title":"Neural Networks for Pattern Recognition","author":"Bishop","year":"1995"},{"issue":"6","key":"10.1016\/j.asoc.2022.109654_b99","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1109\/72.329697","article-title":"Training feedforward networks with the Marquardt algorithm","volume":"5","author":"Hagan","year":"1994","journal-title":"IEEE Trans. Neural Netw."},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b100","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1109\/TNN.2004.836197","article-title":"Geometrical interpretation and architecture selection of MLP","volume":"16","author":"Xiang","year":"2005","journal-title":"IEEE Trans. Neural Netw."},{"issue":"4","key":"10.1016\/j.asoc.2022.109654_b101","doi-asserted-by":"crossref","first-page":"1097","DOI":"10.1109\/TSMCB.2011.2107035","article-title":"Hybrid training method for MLP: optimization of architecture and training","volume":"41","author":"Zanchettin","year":"2011","journal-title":"IEEE Trans. Syst. Man Cybern. B"},{"key":"10.1016\/j.asoc.2022.109654_b102","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.ins.2014.01.038","article-title":"Let a biogeography-based optimizer train your multi-layer perceptron","volume":"269","author":"Mirjalili","year":"2014","journal-title":"Inform. Sci."},{"issue":"3","key":"10.1016\/j.asoc.2022.109654_b103","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","article-title":"A tutorial on support vector regression","volume":"14","author":"Smola","year":"2004","journal-title":"Stat. Comput."},{"issue":"3","key":"10.1016\/j.asoc.2022.109654_b104","first-page":"234","article-title":"Support vector machines in engineering: an overview","volume":"4","author":"Salcedo-Sanz","year":"2014","journal-title":"Wiley Interdiscip. Rev.: Data Min. Knowl. Discov."},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b105","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.asoc.2022.109654_b106","series-title":"Statistical Models: Theory and Practice","author":"Freedman","year":"2009"},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b107","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"key":"10.1016\/j.asoc.2022.109654_b108","series-title":"Linear Algebra Done Right","author":"Axler","year":"1997"},{"issue":"172","key":"10.1016\/j.asoc.2022.109654_b109","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1680\/macr.1995.47.172.227","article-title":"Web reinforcement effects on shear capacity of reinforced high-strength concrete beams","volume":"47","author":"Ahmad","year":"1995","journal-title":"Mag. Concr. Res."},{"issue":"39","key":"10.1016\/j.asoc.2022.109654_b110","first-page":"447","article-title":"Shear strength of lightly reinforced T-beams","volume":"78","author":"Palaskas","year":"1981","journal-title":"Amer. Concr. Inst. J."},{"issue":"1","key":"10.1016\/j.asoc.2022.109654_b111","first-page":"43","article-title":"Reinforced high strength concrete (HSC) beams in shear","volume":"39","author":"Kong","year":"1997","journal-title":"Aust. Civ. Eng. Trans."},{"key":"10.1016\/j.asoc.2022.109654_b112","series-title":"Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung zur Ermittlung der Schubtragf\u00e4higkeit und der oberen Schubspannungsgrenze","author":"Leonhardt","year":"1962"},{"key":"10.1016\/j.asoc.2022.109654_b113","article-title":"Shear strength of prestressed and reinforced concrete T-beams","volume":"42","author":"Moayer","year":"1974","journal-title":"ACI Spec. Publ."},{"key":"10.1016\/j.asoc.2022.109654_b114","series-title":"Shear Tests on 12 Reinforced Concrete T-Beams","author":"S\u00f8rensen","year":"1974"},{"key":"10.1016\/j.asoc.2022.109654_b115","first-page":"19","article-title":"High strength concrete beams","volume":"5","author":"Bernhardt","year":"1986","journal-title":"Nordic Concr. Res."},{"key":"10.1016\/j.asoc.2022.109654_b116","series-title":"Shear Design of Reinforced High-Strength Concrete Beams","author":"Cladera\u00a0Bohigas","year":"2002"},{"key":"10.1016\/j.asoc.2022.109654_b117","article-title":"Shear tests up to failure of beams made with normal and high strength concrete","volume":"193","author":"Levi","year":"1988","journal-title":"CEB Bull."},{"key":"10.1016\/j.asoc.2022.109654_b118","series-title":"Formelsammlumg f\u00fcr die Datenerhebungsdateil Stahlbetonbalken mit B\u00fcgel (vsw-RC_DS)","author":"Reineck","year":"2011"},{"key":"10.1016\/j.asoc.2022.109654_b119","series-title":"Shear in Reinforced Concrete: An Experimental Study: A Report to the Construction Industry Research and Information Association","author":"Regan","year":"1971"},{"key":"10.1016\/j.asoc.2022.109654_b120","series-title":"The Influence of Concrete Strength and Longitudinal Reinforcement Ratio on the Shear Strength of Large-Size Reinforced Concrete Beams With, and Without, Transverse Reinforcement","author":"Angelakos","year":"1999"},{"key":"10.1016\/j.asoc.2022.109654_b121","series-title":"\u00dcber den Einflu\u00df der Balkenh\u00f6he auf die Schubtragf\u00e4gikeit von einfeldigen Stahlbetonbalken mit und ohne Schubbewehrung","author":"Bhal","year":"1968"},{"key":"10.1016\/j.asoc.2022.109654_b122","first-page":"451","article-title":"Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams","volume":"63","author":"Krefeld","year":"1966","journal-title":"J. Proc."},{"issue":"2","key":"10.1016\/j.asoc.2022.109654_b123","first-page":"191","article-title":"Shear strength of high-strength concrete beams with web reinforcement","volume":"87","author":"Roller","year":"1990","journal-title":"Struct. J."},{"issue":"5","key":"10.1016\/j.asoc.2022.109654_b124","first-page":"576","article-title":"Minimum shear reinforcement in normal, medium, and high-strength concrete beams","volume":"93","author":"Yoon","year":"1996","journal-title":"ACI Struct. J."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494622007037?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494622007037?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T03:30:37Z","timestamp":1716607837000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494622007037"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":124,"alternative-id":["S1568494622007037"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2022.109654","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Hybridizing machine learning with metaheuristics for preventing convergence failures in mechanical models based on compression field theories","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2022.109654","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"109654"}}