{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T19:32:41Z","timestamp":1725823961461},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.asoc.2022.109612","type":"journal-article","created":{"date-parts":[[2022,9,6]],"date-time":"2022-09-06T16:43:16Z","timestamp":1662482596000},"page":"109612","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Study of selected methods for balancing independent data sets in k<\/mml:mi><\/mml:math>-nearest neighbors classifiers with Pawlak conflict analysis"],"prefix":"10.1016","volume":"129","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0616-9694","authenticated-orcid":false,"given":"Ma\u0142gorzata","family":"Przyby\u0142a-Kasperek","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2022.109612_b1","doi-asserted-by":"crossref","first-page":"140699","DOI":"10.1109\/ACCESS.2020.3013541","article-title":"Federated learning: A survey on enabling technologies, protocols, and applications","volume":"8","author":"Aledhari","year":"2020","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.asoc.2022.109612_b2","first-page":"95:1","article-title":"A systematic literature review on federated machine learning: From a software engineering perspective","volume":"54","author":"Lo","year":"2021","journal-title":"ACM Comput. Surv."},{"issue":"2","key":"10.1016\/j.asoc.2022.109612_b3","first-page":"31:1","article-title":"A survey of predictive modeling on imbalanced domains","volume":"49","author":"Branco","year":"2016","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.asoc.2022.109612_b4","series-title":"Learning from Imbalanced Data Sets","author":"Fern\u00e1ndez","year":"2018"},{"issue":"1","key":"10.1016\/j.asoc.2022.109612_b5","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1109\/TPAMI.2019.2929166","article-title":"Multiset feature learning for highly imbalanced data classification","volume":"43","author":"Jing","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.asoc.2022.109612_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106223","article-title":"Combined cleaning and resampling algorithm for multi-class imbalanced data with label noise","volume":"204","author":"Koziarski","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.asoc.2022.109612_b7","series-title":"Imbalanced Learning: Foundations, Algorithms, and Applications","author":"Ma","year":"2013"},{"key":"10.1016\/j.asoc.2022.109612_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.07.008","article-title":"Deep learning fault diagnosis method based on global optimization GAN for unbalanced data","volume":"187","author":"Zhou","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.asoc.2022.109612_b9","series-title":"Proceedings of Workshop on Learning from Imbalanced Datasets, Vol. 126","article-title":"kNN approach to unbalanced data distributions: a case study involving information extraction","author":"Mani","year":"2003"},{"key":"10.1016\/j.asoc.2022.109612_b10","series-title":"IEEE Transactions on Systems, Man and Cybernetics, Vol. 6","first-page":"769","article-title":"Two modifications of CNN","author":"Tomek","year":"1976"},{"key":"10.1016\/j.asoc.2022.109612_b11","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"SMOTE: synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"J. Artificial Intelligence Res."},{"key":"10.1016\/j.asoc.2022.109612_b12","first-page":"220","article-title":"Comparison of selected fusion methods from the abstract and rank levels in a system using Pawlak\u2019s approach to coalition formation","volume":"vol. 928","author":"Przybyla-Kasperek","year":"2018"},{"issue":"2","key":"10.1016\/j.asoc.2022.109612_b13","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1142\/S0219622019500020","article-title":"Three conflict methods in multiple classifiers that use dispersed knowledge","volume":"18","author":"Przybyla-Kasperek","year":"2019","journal-title":"Int. J. Inf. Technol. Decis. Mak."},{"issue":"12","key":"10.1016\/j.asoc.2022.109612_b14","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1109\/MCOM.001.2000410","article-title":"From federated to fog learning: Distributed machine learning over heterogeneous wireless networks","volume":"58","author":"Hosseinalipour","year":"2020","journal-title":"IEEE Commun. Mag."},{"key":"10.1016\/j.asoc.2022.109612_b15","series-title":"Cloud Computing","author":"Antonopoulos","year":"2010"},{"key":"10.1016\/j.asoc.2022.109612_b16","unstructured":"Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, Heiko Ludwig, Hybridalpha: An efficient approach for privacy-preserving federated learning, in: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, 2019, pp. 13\u201323."},{"key":"10.1016\/j.asoc.2022.109612_b17","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.ijmedinf.2018.01.007","article-title":"Federated learning of predictive models from federated electronic health records","volume":"112","author":"Brisimi","year":"2018","journal-title":"Int. J. Med. Inform."},{"key":"10.1016\/j.asoc.2022.109612_b18","series-title":"Ensemble Machine Learning","first-page":"1","article-title":"Ensemble learning","author":"Polikar","year":"2012"},{"key":"10.1016\/j.asoc.2022.109612_b19","series-title":"Optimality and stability in federated learning: A game-theoretic approach","author":"Donahue","year":"2021"},{"key":"10.1016\/j.asoc.2022.109612_b20","series-title":"II Brazilian Workshop on Bioinformatics, December 3-5, 2003, Maca\u00e9, RJ, Brazil","first-page":"10","article-title":"Balancing training data for automated annotation of keywords: a case study","author":"Batista","year":"2003"},{"key":"10.1016\/j.asoc.2022.109612_b21","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1613\/jair.1.11192","article-title":"SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary","volume":"61","author":"Fern\u00e1ndez","year":"2018","journal-title":"J. Artificial Intelligence Res."},{"key":"10.1016\/j.asoc.2022.109612_b22","series-title":"DeepSMOTE: Fusing deep learning and SMOTE for imbalanced data","author":"Dablain","year":"2021"},{"issue":"1","key":"10.1016\/j.asoc.2022.109612_b23","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1109\/TNNLS.2018.2832648","article-title":"A cost-sensitive deep belief network for imbalanced classification","volume":"30","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.asoc.2022.109612_b24","series-title":"Combining Instance-Based Learning and Rule-Based Methods for Imbalanced Data","author":"G\u00f3ra","year":"2022"},{"key":"10.1016\/j.asoc.2022.109612_b25","series-title":"Third International Workshop on Learning with Imbalanced Domains: Theory and Applications","first-page":"90","article-title":"Two ways of extending bracid rule-based classifiers for multi-class imbalanced data","author":"Naklicka","year":"2021"},{"issue":"1\u20132","key":"10.1016\/j.asoc.2022.109612_b26","doi-asserted-by":"crossref","first-page":"51","DOI":"10.3233\/FI-2016-1422","article-title":"Post-processing of BRACID rules induced from imbalanced data","volume":"148","author":"Napierala","year":"2016","journal-title":"Fundam. Inform."},{"key":"10.1016\/j.asoc.2022.109612_b27","series-title":"Progress in Pattern Recognition, Image Analysis and Applications, 12th Iberoamericann Congress on Pattern Recognition, CIARP 2007, Valparaiso, Chile, November 13-16, 2007, Proceedings","first-page":"397","article-title":"An empirical study of the behavior of classifiers on imbalanced and overlapped data sets","volume":"vol. 4756","author":"Garc\u00eda","year":"2007"},{"key":"10.1016\/j.asoc.2022.109612_b28","series-title":"Emerging Paradigms in Machine Learning","first-page":"277","article-title":"Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data","author":"Stefanowski","year":"2013"},{"key":"10.1016\/j.asoc.2022.109612_b29","unstructured":"Nathalie Japkowicz, Class imbalances: are we focusing on the right issue, in: Workshop on Learning from Imbalanced Data Sets II, Vol. 1723, 2003, p. 63."},{"issue":"9","key":"10.1016\/j.asoc.2022.109612_b30","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"3","key":"10.1016\/j.asoc.2022.109612_b31","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/MSP.2020.2975749","article-title":"Federated learning: Challenges, methods, and future directions","volume":"37","author":"Li","year":"2020","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.asoc.2022.109612_b32","series-title":"2017 International Conference on Computing, Networking and Communications, ICNC 2017, Silicon Valley, CA, USA, January 26-29, 2017","first-page":"711","article-title":"Federated cloud computing as system of systems","author":"Biran","year":"2017"},{"key":"10.1016\/j.asoc.2022.109612_b33","series-title":"Rough Sets and Knowledge Technology, First International Conference, RSKT 2006, Chongqing, China, July 24-26, 2006, Proceedings","first-page":"12","article-title":"Conflicts and negotations","volume":"vol. 4062","author":"Pawlak","year":"2006"},{"key":"10.1016\/j.asoc.2022.109612_b34","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.ins.2014.02.076","article-title":"Global decision-making system with dynamically generated clusters","volume":"270","author":"Przybyla-Kasperek","year":"2014","journal-title":"Inform. Sci."},{"issue":"2","key":"10.1016\/j.asoc.2022.109612_b35","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/S0031-3203(99)00223-X","article-title":"Decision templates for multiple classifier fusion: an experimental comparison","volume":"34","author":"Kuncheva","year":"2001","journal-title":"Pattern Recognit."},{"issue":"4","key":"10.1016\/j.asoc.2022.109612_b36","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1080\/03081079.2017.1314276","article-title":"Comparison of fusion methods from the abstract level and the rank level in a dispersed decision-making system","volume":"46","author":"Przybyla-Kasperek","year":"2017","journal-title":"Int. J. Gen. Syst."},{"key":"10.1016\/j.asoc.2022.109612_b37","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/j.ins.2014.07.032","article-title":"A dispersed decision-making system - the use of negotiations during the dynamic generation of a system\u2019s structure","volume":"288","author":"Przybyla-Kasperek","year":"2014","journal-title":"Inform. Sci."},{"issue":"3","key":"10.1016\/j.asoc.2022.109612_b38","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1007\/s00500-008-0323-y","article-title":"KEEL: a software tool to assess evolutionary algorithms for data mining problems","volume":"13","author":"Alcal\u00e1-Fdez","year":"2009","journal-title":"Soft Comput."},{"key":"10.1016\/j.asoc.2022.109612_b39","series-title":"Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, SIGCSE 2017, Seattle, WA, USA, March 8-11, 2017","first-page":"742","article-title":"An introduction to the weka data mining system (abstract only)","author":"Russell","year":"2017"},{"key":"10.1016\/j.asoc.2022.109612_b40","series-title":"Python, Data Science and Machine Learning - from Scratch to Productivity","author":"Bilokon","year":"2022"},{"key":"10.1016\/j.asoc.2022.109612_b41","series-title":"Computational Science - ICCS 2021 - 21st International Conference, Krakow, Poland, June 16-18, 2021, Proceedings, Part III","first-page":"420","article-title":"Bagging and single decision tree approaches to dispersed data","volume":"vol. 12744","author":"Przybyla-Kasperek","year":"2021"},{"issue":"2","key":"10.1016\/j.asoc.2022.109612_b42","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1007\/s10844-011-0193-0","article-title":"BRACID: a comprehensive approach to learning rules from imbalanced data","volume":"39","author":"Napierala","year":"2012","journal-title":"J. Intell. Inf. Syst."},{"issue":"4","key":"10.1016\/j.asoc.2022.109612_b43","first-page":"369","article-title":"RIONA: a new classification system combining rule induction and instance-based learning","volume":"51","author":"G\u00f3ra","year":"2002","journal-title":"Fundam. Inform."},{"key":"10.1016\/j.asoc.2022.109612_b44","series-title":"Machine Learning: ECML 2002, 13th European Conference on Machine Learning, Helsinki, Finland, August 19-23, 2002, Proceedings","first-page":"111","article-title":"RIONA: a classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood","volume":"vol. 2430","author":"G\u00f3ra","year":"2002"},{"key":"10.1016\/j.asoc.2022.109612_b45","unstructured":"Jerzy Stefanowski, The rough set based rule induction technique for classification problems, in: Proceedings of 6th European Conference on Intelligent Techniques and Soft Computing EUFIT, Vol. 98, 1998, pp. 109\u2013113."},{"key":"10.1016\/j.asoc.2022.109612_b46","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.is.2015.02.006","article-title":"Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem","volume":"51","author":"Siers","year":"2015","journal-title":"Inf. Syst."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494622006615?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494622006615?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T13:06:35Z","timestamp":1681563995000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494622006615"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":46,"alternative-id":["S1568494622006615"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2022.109612","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Study of selected methods for balancing independent data sets in -nearest neighbors classifiers with Pawlak conflict analysis","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2022.109612","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109612"}}