{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T09:17:49Z","timestamp":1726478269478},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.asoc.2022.109498","type":"journal-article","created":{"date-parts":[[2022,8,17]],"date-time":"2022-08-17T23:42:11Z","timestamp":1660779731000},"page":"109498","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Global temperature reconstruction of equipment based on the local temperature image using TRe-GAN"],"prefix":"10.1016","volume":"128","author":[{"given":"Jincheng","family":"Chen","sequence":"first","affiliation":[]},{"given":"Feiding","family":"Zhu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1250-2801","authenticated-orcid":false,"given":"Yuge","family":"Han","sequence":"additional","affiliation":[]},{"given":"Zhendao","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Qing","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Dengfeng","family":"Ren","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2022.109498_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.applthermaleng.2019.114289","article-title":"Heat dissipation optimization of lithium-ion battery pack based on neural networks","volume":"162","author":"Qian","year":"2019","journal-title":"Appl. Therm. Eng."},{"issue":"9","key":"10.1016\/j.asoc.2022.109498_b2","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1016\/S0890-6955(02)00039-1","article-title":"Prediction of tool and chip temperature in continuous and interrupted machining","volume":"42","author":"Lazoglu","year":"2002","journal-title":"Int. J. Mach. Tools Manuf."},{"key":"10.1016\/j.asoc.2022.109498_b3","doi-asserted-by":"crossref","first-page":"472","DOI":"10.1016\/j.proeng.2012.08.081","article-title":"Cfd simulation of temperature field distribution of the liquefied hydrocarbon spherical tank leaking","volume":"43","author":"Xiaodong","year":"2012","journal-title":"Procedia Eng."},{"key":"10.1016\/j.asoc.2022.109498_b4","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.ijheatmasstransfer.2018.10.024","article-title":"Numerical study on oil temperature field during long storage in large floating roof tank","volume":"130","author":"Li","year":"2019","journal-title":"Int. J. Heat Mass Transfer"},{"key":"10.1016\/j.asoc.2022.109498_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2019.116878","article-title":"Numerical analysis of geometrical and process parameters influence on temperature stratification in a large volumetric heat storage tank","volume":"194","author":"Kocijel","year":"2020","journal-title":"Energy"},{"key":"10.1016\/j.asoc.2022.109498_b6","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.infrared.2019.04.022","article-title":"Sea surface temperature inversion model for infrared remote sensing images based on deep neural network","volume":"99","author":"Ai","year":"2019","journal-title":"Infrared Phys. Technol."},{"issue":"8","key":"10.1016\/j.asoc.2022.109498_b7","doi-asserted-by":"crossref","first-page":"2035","DOI":"10.1016\/j.asr.2020.07.002","article-title":"A novel method for solar panel temperature determination based on a wavelet neural network and Hammerstein-Wiener model","volume":"66","author":"Chen","year":"2020","journal-title":"Adv. Space Res."},{"key":"10.1016\/j.asoc.2022.109498_b8","series-title":"Deep learning the physics of transport phenomena","author":"Amir","year":"2017"},{"key":"10.1016\/j.asoc.2022.109498_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104314","article-title":"Effectiveness of neural networks and transfer learning for indoor air-temperature forecasting","volume":"140","author":"Bellagarda","year":"2022","journal-title":"Autom. Constr."},{"key":"10.1016\/j.asoc.2022.109498_b10","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1016\/j.ymssp.2019.02.037","article-title":"Neural networks for 3D temperature field reconstruction via acoustic signals","volume":"126","author":"Ma","year":"2019","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.asoc.2022.109498_b11","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115727","article-title":"Fast prediction of complicated temperature field using conditional multi-attention generative adversarial networks (CMAGAN)","volume":"186","author":"Chen","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2022.109498_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.applthermaleng.2019.114235","article-title":"Experimental verification of three-dimensional temperature field reconstruction method based on lucy-richardson and nearest neighbor filtering joint deconvolution algorithm for flame light field imaging","volume":"162","author":"Li","year":"2019","journal-title":"Appl. Therm. Eng."},{"key":"10.1016\/j.asoc.2022.109498_b13","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.solener.2017.04.072","article-title":"Simplified model of a dual-media molten-salt thermocline tank with a multiple layer wall","volume":"151","author":"Fern\u00e1ndez-Torrijos","year":"2017","journal-title":"Sol. Energy"},{"key":"10.1016\/j.asoc.2022.109498_b14","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.actamat.2018.08.022","article-title":"Predicting glass transition temperatures using neural networks","volume":"159","author":"Cassar","year":"2018","journal-title":"Acta Mater."},{"key":"10.1016\/j.asoc.2022.109498_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.107888","article-title":"A spatial\u2013temporal graph attention network approach for air temperature forecasting","volume":"113","author":"Yu","year":"2021","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2022.109498_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.104902","article-title":"Temperature field inversion of heat-source systems via physics-informed neural networks","volume":"113","author":"Liu","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.asoc.2022.109498_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.est.2020.101280","article-title":"A deep collocation method for heat transfer in porous media: Verification from the finite element method","volume":"28","author":"Lin","year":"2020","journal-title":"J. Energy Storage"},{"key":"10.1016\/j.asoc.2022.109498_b18","doi-asserted-by":"crossref","unstructured":". Martinez, T. Matthew, O.N. Heiner, Onditional Generative Adversarial Networks for Solving Heat Transfer Problems, United States, N., 2020.","DOI":"10.2172\/1673172"},{"key":"10.1016\/j.asoc.2022.109498_b19","first-page":"2672","article-title":"Conditional generative adversarial nets","author":"Mirza","year":"2014","journal-title":"Comput. Sci."},{"key":"10.1016\/j.asoc.2022.109498_b20","series-title":"Conditional generative adversarial nets","author":"Mirza","year":"2014"},{"key":"10.1016\/j.asoc.2022.109498_b21","doi-asserted-by":"crossref","first-page":"656","DOI":"10.1016\/j.ijheatmasstransfer.2019.01.069","article-title":"Image-based reconstruction for a 3D-PFHS heat transfer problem by ReConNN","volume":"134","author":"Li","year":"2019","journal-title":"Int. J. Heat Mass Transfer"},{"key":"10.1016\/j.asoc.2022.109498_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijheatmasstransfer.2019.118749","article-title":"Optimization of the hole distribution of an effusively cooled surface facing non-uniform incoming temperature using deep learning approaches","volume":"145","author":"Yang","year":"2019","journal-title":"Int. J. Heat Mass Transfer"},{"key":"10.1016\/j.asoc.2022.109498_b23","series-title":"2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA)","first-page":"186","article-title":"Image-to-image translation using generative adversarial network","author":"Lata","year":"2019"},{"key":"10.1016\/j.asoc.2022.109498_b24","series-title":"Weakly-supervised reconstruction of 3D objects with large shape variation from single in-the-wild images","author":"Shichen","year":"2021"},{"key":"10.1016\/j.asoc.2022.109498_b25","series-title":"2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","first-page":"837","article-title":"FPGA accelerates deep residual learning for image recognition","author":"Li","year":"2017"},{"key":"10.1016\/j.asoc.2022.109498_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijheatmasstransfer.2020.119834","article-title":"Prediction of the minimum film boiling temperature using artificial neural network","volume":"155","author":"Bahman","year":"2020","journal-title":"Int. J. Heat Mass Transfer"},{"key":"10.1016\/j.asoc.2022.109498_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijheatmasstransfer.2020.120204","article-title":"Application of an artificial neural network (ANN) for predicting low-GWP refrigerant boiling heat transfer inside brazed plate heat exchangers (BPHE)","volume":"160","author":"Longo","year":"2020","journal-title":"Int. J. Heat Mass Transfer"},{"key":"10.1016\/j.asoc.2022.109498_b28","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1016\/j.neucom.2021.05.092","article-title":"SDCRKL-GP: Scalable deep convolutional random kernel learning in gaussian process for image recognition","volume":"456","author":"Wang","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2022.109498_b29","series-title":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","first-page":"463","article-title":"Residual squeeze CNDS deep learning CNN model for very large scale places image recognition","author":"Verma","year":"2017"},{"key":"10.1016\/j.asoc.2022.109498_b30","series-title":"2020 International Conference on Information Technology and Nanotechnology (ITNT)","first-page":"1","article-title":"Study of GAN-based image reconstruction for diffractive optical systems","author":"Evdokimova","year":"2020"},{"key":"10.1016\/j.asoc.2022.109498_b31","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"8","key":"10.1016\/j.asoc.2022.109498_b32","doi-asserted-by":"crossref","first-page":"4066","DOI":"10.1109\/TIP.2018.2836316","article-title":"Perceptual adversarial networks for image-to-image transformation","volume":"27","author":"Wang","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.asoc.2022.109498_b33","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.procs.2020.12.006","article-title":"Multi-class weather forecasting from Twitter using machine learning aprroaches","volume":"179","author":"Purwandari","year":"2021","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.asoc.2022.109498_b34","article-title":"A novel diminish smooth L1 loss model with generative adversarial network","author":"Sutanto","year":"2021","journal-title":"Intell. Hum. Comput. Interact."},{"key":"10.1016\/j.asoc.2022.109498_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.jenvman.2020.111888","article-title":"2.5 And PM10) generation map using MODIS level-1 satellite images and deep neural network","volume":"281","author":"Imani","year":"2021","journal-title":"J. Environ. Manag."},{"key":"10.1016\/j.asoc.2022.109498_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106253","article-title":"A novel multi-focus image fusion by combining simplified very deep convolutional networks and patch-based sequential reconstruction strategy","volume":"91","author":"Wang","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2022.109498_b37","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.neucom.2018.10.049","article-title":"Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines","volume":"329","author":"Wang","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2022.109498_b38","series-title":"2016 50th Asilomar Conference on Signals, Systems and Computers","first-page":"1586","article-title":"Precise digital implementations of hyperbolic tanh and sigmoid function","author":"Gomar","year":"2016"},{"key":"10.1016\/j.asoc.2022.109498_b39","article-title":"Geometric characteristics of DARPA (defense advanced research projects agency) SUBOFF models (DTRC model numbers 5470 and 5471)","author":"Groves","year":"1989","journal-title":"Geom. Character. Darpa Suboff Models"},{"key":"10.1016\/j.asoc.2022.109498_b40","doi-asserted-by":"crossref","first-page":"882","DOI":"10.1016\/j.solener.2018.08.025","article-title":"Effects of different thermal storage tank structures on temperature stratification and thermal efficiency during charging","volume":"173","author":"Li","year":"2018","journal-title":"Sol. Energy"},{"key":"10.1016\/j.asoc.2022.109498_b41","series-title":"Fundamentals of Heat and Mass Transfer","author":"Dewitt","year":"2006"},{"key":"10.1016\/j.asoc.2022.109498_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.chroma.2019.460808","article-title":"Determination of veterinary drug\/pesticide residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification combined with ultra-high-performance liquid chromatography\u2013tandem mass spectrometry","volume":"1617","author":"Wang","year":"2020","journal-title":"J. Chromatogr. A"},{"key":"10.1016\/j.asoc.2022.109498_b43","unstructured":"F. Ling, B. Xl, B. Qza, B. Ls, B. Lz, C. Hz, B. Wk, An orthogonal experimental design and QuEChERS based UFLC-MS\/MS for multi-pesticides and human exposure risk assessment in Honeysuckle, Ind. Crops Prod. 164."},{"key":"10.1016\/j.asoc.2022.109498_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijheatmasstransfer.2020.119488","article-title":"Fouling potential prediction and multi-objective optimization of a flue gas heat exchanger using neural networks and genetic algorithms","volume":"152","author":"Tang","year":"2020","journal-title":"Int. J. Heat Mass Transfer"},{"issue":"4","key":"10.1016\/j.asoc.2022.109498_b45","doi-asserted-by":"crossref","DOI":"10.1145\/3072959.3073599","article-title":"Tanks and temples: Benchmarking large-scale scene reconstruction","volume":"36","author":"Knapitsch","year":"2017","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.asoc.2022.109498_b46","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijheatmasstransfer.2019.119083","article-title":"Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results","volume":"148","author":"Warey","year":"2020","journal-title":"Int. J. Heat Mass Transfer"},{"key":"10.1016\/j.asoc.2022.109498_b47","series-title":"Soft rasterizer: A differentiable renderer for image-based 3D reasoning","author":"Shichen","year":"2019"},{"issue":"24","key":"10.1016\/j.asoc.2022.109498_b48","article-title":"Point cloud semantic segmentation based on KNN-PointNet","volume":"58","author":"Yang","year":"2021","journal-title":"Laser Optoelectron. Prog."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494622005907?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494622005907?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T09:03:27Z","timestamp":1681549407000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494622005907"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":48,"alternative-id":["S1568494622005907"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2022.109498","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Global temperature reconstruction of equipment based on the local temperature image using TRe-GAN","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2022.109498","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109498"}}