{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T08:21:36Z","timestamp":1720513296402},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1016\/j.asoc.2021.108013","type":"journal-article","created":{"date-parts":[[2021,10,29]],"date-time":"2021-10-29T00:02:31Z","timestamp":1635465751000},"page":"108013","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"PB","title":["Cooperative coevolutionary algorithm with resource allocation strategies to minimize unnecessary computations"],"prefix":"10.1016","volume":"113","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1044-3089","authenticated-orcid":false,"given":"Kyung Soo","family":"Kim","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9042-0599","authenticated-orcid":false,"given":"Yong Suk","family":"Choi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2021.108013_b1","doi-asserted-by":"crossref","first-page":"729","DOI":"10.1007\/s13042-019-01030-4","article-title":"Large-scale evolutionary optimization: a survey and experimental comparative study","volume":"11","author":"Jian","year":"2020","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.asoc.2021.108013_b2","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.ins.2019.10.049","article-title":"An efficient variable interdependency-identification and decomposition by minimizing redundant computations for large-scale global optimization","volume":"513","author":"Kim","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.108013_b3","doi-asserted-by":"crossref","first-page":"517","DOI":"10.1016\/j.ins.2014.09.031","article-title":"A comprehensive comparison of large scale global optimizers","volume":"316","author":"LaTorre","year":"2015","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.108013_b4","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1137\/16M1080173","article-title":"Optimization methods for large-scale machine learning","volume":"60","author":"Bottou","year":"2018","journal-title":"SIAM Rev."},{"key":"10.1016\/j.asoc.2021.108013_b5","series-title":"New Advancements in Swarm Algorithms: Operators and Applications","first-page":"1","article-title":"An introduction to Nature-Inspired Metaheuristics and Swarm Methods","author":"Cuevas","year":"2020"},{"key":"10.1016\/j.asoc.2021.108013_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2019.01.009","article-title":"Investigating surrogate-assisted cooperative coevolution for large-Scale global optimization","volume":"482","author":"De\u00a0Falco","year":"2019","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.108013_b7","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1109\/TEVC.2018.2868770","article-title":"A survey on Cooperative Co-Evolutionary Algorithms","volume":"23","author":"Ma","year":"2019","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.asoc.2021.108013_b8","series-title":"Parallel Problem Solving from Nature \u2014 PPSN III","first-page":"249","article-title":"A cooperative coevolutionary approach to function optimization","author":"Potter","year":"1994"},{"key":"10.1016\/j.asoc.2021.108013_b9","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1109\/TEVC.2016.2627581","article-title":"Efficient resource allocation in cooperative Co-Evolution for Large-Scale Global Optimization","volume":"21","author":"Yang","year":"2017","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.asoc.2021.108013_b10","series-title":"2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS)","first-page":"233","article-title":"Computational resource allocation for Edge Computing in Social Internet-of-Things","author":"Khanfor","year":"2020"},{"key":"10.1016\/j.asoc.2021.108013_b11","series-title":"Internet of Things, Smart Spaces, and Next Generation Networks and Systems","first-page":"135","article-title":"Multi-agent approach to computational resource allocation in edge computing","author":"Kovtunenko","year":"2019"},{"key":"10.1016\/j.asoc.2021.108013_b12","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.asoc.2018.12.007","article-title":"Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems","volume":"76","author":"Kazimipour","year":"2019","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2021.108013_b13","series-title":"2016 IEEE Congress on Evolutionary Computation (CEC)","first-page":"3541","article-title":"CBCC3 \u2014 A contribution-based cooperative co-evolutionary algorithm with improved exploration\/exploitation balance","author":"Omidvar","year":"2016"},{"key":"10.1016\/j.asoc.2021.108013_b14","series-title":"Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation","first-page":"1115","article-title":"Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms","author":"Omidvar","year":"2011"},{"key":"10.1016\/j.asoc.2021.108013_b15","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.ins.2019.09.065","article-title":"CCFR2: A more efficient cooperative co-evolutionary framework for large-scale global optimization","volume":"512","author":"Yang","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.108013_b16","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.ins.2016.11.013","article-title":"Cooperation coevolution with fast interdependency identification for large scale optimization","volume":"381","author":"Hu","year":"2017","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.108013_b17","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1016\/j.asoc.2017.08.025","article-title":"Mixed second order partial derivatives decomposition method for large scale optimization","volume":"61","author":"Li","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2021.108013_b18","doi-asserted-by":"crossref","DOI":"10.1145\/2791291","article-title":"A competitive Divide-and-Conquer Algorithm for unconstrained Large-Scale Black-Box Optimization","volume":"42","author":"Mei","year":"2016","journal-title":"ACM Trans. Math. Software"},{"key":"10.1016\/j.asoc.2021.108013_b19","doi-asserted-by":"crossref","first-page":"929","DOI":"10.1109\/TEVC.2017.2694221","article-title":"DG2: A faster and more accurate differential grouping for Large-Scale Black-Box Optimization","volume":"21","author":"Omidvar","year":"2017","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.asoc.2021.108013_b20","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1109\/TEVC.2017.2778089","article-title":"A recursive decomposition method for Large Scale Continuous Optimization","volume":"22","author":"Sun","year":"2018","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.asoc.2021.108013_b21","doi-asserted-by":"crossref","first-page":"546","DOI":"10.1016\/j.swevo.2018.06.010","article-title":"Differential Evolution: A survey of theoretical analyses","volume":"44","author":"Opara","year":"2019","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.asoc.2021.108013_b22","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1016\/j.ins.2014.10.042","article-title":"Metaheuristics in large-scale global continues optimization: A survey","volume":"295","author":"Mahdavi","year":"2015","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.108013_b23","series-title":"Multi-Armed Bandit Allocation Indices","author":"Gittins","year":"2011"},{"key":"10.1016\/j.asoc.2021.108013_b24","series-title":"Algorithms for multi-armed bandit problems","author":"Kuleshov","year":"2014"},{"key":"10.1016\/j.asoc.2021.108013_b25","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s10618-010-0184-8","article-title":"Tree pattern expression for extracting information from syntactically parsed text corpora","volume":"22","author":"Choi","year":"2011","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.asoc.2021.108013_b26","doi-asserted-by":"crossref","first-page":"1139","DOI":"10.1016\/j.knosys.2011.04.009","article-title":"TPEMatcher: A tool for searching in parsed text corpora","volume":"24","author":"Choi","year":"2011","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.asoc.2021.108013_b27","doi-asserted-by":"crossref","first-page":"561","DOI":"10.3390\/sym11040561","article-title":"Boosting memory-based collaborative filtering using content-metadata","volume":"11","author":"Kim","year":"2019","journal-title":"Symmetry"},{"key":"10.1016\/j.asoc.2021.108013_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.cogpsych.2019.101261","article-title":"Finding structure in multi-armed bandits","volume":"119","author":"Schulz","year":"2020","journal-title":"Cogn. Psychol."},{"key":"10.1016\/j.asoc.2021.108013_b29","series-title":"Multi-Armed Bandit Algorithms and Empirical Evaluation, in","first-page":"437","author":"Vermorel","year":"2005"},{"key":"10.1016\/j.asoc.2021.108013_b30","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.adhoc.2019.01.006","article-title":"Collaborative spatial reuse in wireless networks via selfish multi-armed bandits","volume":"88","author":"Wilhelmi","year":"2019","journal-title":"Ad Hoc Netw."},{"key":"10.1016\/j.asoc.2021.108013_b31","series-title":"Benchmark Functions for the CEC 2010 Special Session and Competition on Large-Scale Global Optimization: Nature Inspired Computation and Applications Laboratory","author":"Tang","year":"2009"},{"key":"10.1016\/j.asoc.2021.108013_b32","series-title":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","first-page":"1110","article-title":"Self-adaptive differential evolution with neighborhood search","author":"Yang","year":"2008"},{"key":"10.1016\/j.asoc.2021.108013_b33","doi-asserted-by":"crossref","first-page":"2044","DOI":"10.1016\/j.ins.2009.12.010","article-title":"Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power","volume":"180","author":"Garc\u00eda","year":"2010","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.108013_b34","series-title":"Handbook of Parametric and Nonparametric Statistical Procedures","author":"Sheskin","year":"2020"},{"key":"10.1016\/j.asoc.2021.108013_b35","unstructured":"X. Li, K. Tang, M.N. Omidvar, Z. Yang, K. Qin, H. China, Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization, in, China, Hefei, China, 2013."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494621009352?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494621009352?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T12:28:13Z","timestamp":1681561693000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494621009352"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12]]},"references-count":35,"alternative-id":["S1568494621009352"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2021.108013","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2021,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Cooperative coevolutionary algorithm with resource allocation strategies to minimize unnecessary computations","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2021.108013","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108013"}}