{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T04:36:18Z","timestamp":1725770178033},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,4,23]],"date-time":"2021-04-23T00:00:00Z","timestamp":1619136000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100005632","name":"National Centre for Research and Development","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005632","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.asoc.2021.107400","type":"journal-article","created":{"date-parts":[[2021,4,19]],"date-time":"2021-04-19T03:29:20Z","timestamp":1618802960000},"page":"107400","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Hybrid AI system based on ART neural network and Mixture of Gaussians modules with application to intelligent monitoring of the wind turbine"],"prefix":"10.1016","volume":"108","author":[{"given":"Andrzej","family":"Bielecki","sequence":"first","affiliation":[]},{"given":"Mateusz","family":"W\u00f3jcik","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2021.107400_b1","series-title":"Condition Monitoring of Wind Turbines: State of the Art, User Experience and Recommendations","author":"Coronado","year":"2015"},{"issue":"4","key":"10.1016\/j.asoc.2021.107400_b2","first-page":"19","article-title":"Analysing wind turbine state dynamics for fault diagnosis","volume":"17","author":"Bartolini","year":"2016","journal-title":"Diagnostyka"},{"key":"10.1016\/j.asoc.2021.107400_b3","first-page":"11","article-title":"ART-type artificial neural networks applications for classification of operational states in wind turbines","volume":"vol. 6114","author":"Barszcz","year":"2010"},{"key":"10.1016\/j.asoc.2021.107400_b4","first-page":"225","article-title":"Wind turbines states classification by a fuzzy-ART neural network with a stereographic projection as a signal normalization","volume":"vol. 6594","author":"Barszcz","year":"2011"},{"issue":"1","key":"10.1016\/j.asoc.2021.107400_b5","first-page":"17","article-title":"Diagnosis of wind turbine misalignment through SCADA data","volume":"18","author":"Astolfi","year":"2017","journal-title":"Diagnostyka"},{"key":"10.1016\/j.asoc.2021.107400_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.105919","article-title":"A novel deep learning method based on attention mechanism for bearing remaining useful life prediction","volume":"86","author":"Chen","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2021.107400_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106119","article-title":"Constructing a health indicator for roller bearings by using a stacked auto-encoder with an exponential function to eliminate concussion","volume":"89","author":"Xu","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2021.107400_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.106060","article-title":"Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings","volume":"88","author":"Zhu","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2021.107400_b9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.rser.2007.05.008","article-title":"Condition monitoring and fault detection of wind turbines and related algorithms: A review","volume":"13","author":"Hameed","year":"2009","journal-title":"Renew. Sustain. Energy Rev."},{"key":"10.1016\/j.asoc.2021.107400_b10","doi-asserted-by":"crossref","first-page":"552","DOI":"10.1016\/j.compind.2006.02.011","article-title":"SIMAP: Intelligent system for predictive maintenance: Application to the health condition monitoring of a windturbine gearbox","volume":"57","author":"Garcia","year":"2006","journal-title":"Comput. Ind."},{"key":"10.1016\/j.asoc.2021.107400_b11","unstructured":"S. Yang, W. Li, C. Wang, The intelligent fault diagnosis of wind turbine gearbox based on artificial neural network, in: International Conference on Condition Monitoring and Diagnosis, CMD 2008, 2008, pp. 1327\u20131330."},{"key":"10.1016\/j.asoc.2021.107400_b12","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.renene.2012.04.031","article-title":"Fault detection and diagnosis within a wind turbine mechanical braking system using condition monitoring","volume":"47","author":"Entezami","year":"2012","journal-title":"Renew. Energy"},{"issue":"1","key":"10.1016\/j.asoc.2021.107400_b13","first-page":"9","article-title":"Wind turbine fault diagnosis through temperature analysis: an artificial neural network approach","volume":"18","author":"Mana","year":"2017","journal-title":"Diagnostyka"},{"key":"10.1016\/j.asoc.2021.107400_b14","doi-asserted-by":"crossref","first-page":"1954","DOI":"10.1016\/j.measurement.2011.08.017","article-title":"Automatic validation of vibration signals in wind farm distributed monitoring systems","volume":"44","author":"Jab\u0142o\u0144ski","year":"2011","journal-title":"Measurement"},{"key":"10.1016\/j.asoc.2021.107400_b15","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1016\/j.measurement.2012.09.011","article-title":"Modeling of probability distribution functions for automatic threshold calculation in condition monitoring systems","volume":"46","author":"Jab\u0142o\u0144ski","year":"2013","journal-title":"Measurement"},{"issue":"1","key":"10.1016\/j.asoc.2021.107400_b16","doi-asserted-by":"crossref","first-page":"63","DOI":"10.29354\/diag\/100399","article-title":"Concept of automated malfunction detection of large turbomachinery using machine learning on transient data","volume":"20","author":"Barszcz","year":"2019","journal-title":"Diagnostyka"},{"key":"10.1016\/j.asoc.2021.107400_b17","doi-asserted-by":"crossref","unstructured":"R.F. Manrique, F.A. Giraldo, J.S. Esmeral, Fault detection and diagnosis for wind turbines using data-driven approach. in: 7th Colombian Computing Congress, 2012, pp. 1\u20136.","DOI":"10.1109\/ColombianCC.2012.6398018"},{"key":"10.1016\/j.asoc.2021.107400_b18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.renene.2013.06.025","article-title":"Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine","volume":"62","author":"Tang","year":"2014","journal-title":"Renew. Energy"},{"key":"10.1016\/j.asoc.2021.107400_b19","doi-asserted-by":"crossref","first-page":"728","DOI":"10.1002\/we.1521","article-title":"Monitoring wind turbine gearboxes","volume":"16","author":"Feng","year":"2013","journal-title":"Wind Energy"},{"key":"10.1016\/j.asoc.2021.107400_b20","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1049\/iet-rpg.2015.0160","article-title":"Applying thermophysics for wind turbine drivetrain fault diagnosis using SCADA data","volume":"10","author":"Qiu","year":"2016","journal-title":"IET Renew. Power Gener."},{"key":"10.1016\/j.asoc.2021.107400_b21","doi-asserted-by":"crossref","first-page":"574","DOI":"10.1002\/we.319","article-title":"Online wind turbine fault detection through automated SCADA data analysis","volume":"12","author":"Zaher","year":"2009","journal-title":"Wind Energy"},{"key":"10.1016\/j.asoc.2021.107400_b22","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.renene.2012.03.003","article-title":"Condition monitoring of wind turbines: Techniques and methods","volume":"46","author":"M\u00e1rquez","year":"2012","journal-title":"Renew. Energy"},{"key":"10.1016\/j.asoc.2021.107400_b23","doi-asserted-by":"crossref","first-page":"620","DOI":"10.1016\/j.renene.2018.10.047","article-title":"Machine learning methods for wind turbine condition monitoring: A review","volume":"133","author":"Stetco","year":"2019","journal-title":"Renew. Energy"},{"key":"10.1016\/j.asoc.2021.107400_b24","doi-asserted-by":"crossref","first-page":"3138","DOI":"10.1016\/j.neucom.2009.03.017","article-title":"Neural network adaptation process effectiveness dependent of constant training data availability","volume":"72","author":"Dudek-Dyduch","year":"2009","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2021.107400_b25","series-title":"Advances in Condition Monitoring of Machinery in Non-Stationary Operations","first-page":"265","article-title":"Vertical axis wind turbine states classification by a ART-2 neural network with a stereographic projection as a signal normalization","volume":"vol. 4","author":"Barszcz","year":"2016"},{"key":"10.1016\/j.asoc.2021.107400_b26","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.jweia.2012.06.007","article-title":"Wind speed modelling using weierstrass function fitted by a genetic algorithm","volume":"109","author":"Barszcz","year":"2012","journal-title":"J. Wind Eng. Ind. Aerodyn."},{"key":"10.1016\/j.asoc.2021.107400_b27","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1016\/j.ymssp.2014.05.035","article-title":"Modelling of a chaotic load of wind turbines drivetrain","volume":"54\u201355","author":"Bielecki","year":"2015","journal-title":"Mech. Syst. Signal Process."},{"issue":"4","key":"10.1016\/j.asoc.2021.107400_b28","first-page":"21","article-title":"Art-2 artificial neural networks applications for classification of vibration signals and operational states of wind turbines for intelligent monitoring","volume":"14","author":"Barszcz","year":"2013","journal-title":"Diagnostyka"},{"key":"10.1016\/j.asoc.2021.107400_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.asoc.2017.04.012","article-title":"Hybrid system of ART and RBF neural networks for online clustering","volume":"58","author":"Bielecki","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2021.107400_b30","series-title":"Data Mining","first-page":"237","article-title":"Outlier analysis","author":"Aggarwal","year":"2015"},{"key":"10.1016\/j.asoc.2021.107400_b31","series-title":"Histogram-Based Outlier Score (Hbos): a Fast Unsupervised Anomaly Detection Algorithm","author":"Goldstein","year":"2012"},{"key":"10.1016\/j.asoc.2021.107400_b32","doi-asserted-by":"crossref","unstructured":"Z. Li, Y. Zhao, N. Botta, C. Ionescu, X. Hu, COPOD: copula-based outlier detection. in: IEEE International Conference on Data Mining, ICDM, 2020.","DOI":"10.1109\/ICDM50108.2020.00135"},{"issue":"1","key":"10.1016\/j.asoc.2021.107400_b33","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1145\/2133360.2133363","article-title":"Isolation-based anomaly detection","volume":"6","author":"Liu","year":"2012","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"10.1016\/j.asoc.2021.107400_b34","unstructured":"M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, L.W. Chang, A novel anomaly detection scheme based on principal component classifier, in: ICDM Foundation and New Direction of Data Mining workshop, 2003, pp. 172\u2013179."},{"key":"10.1016\/j.asoc.2021.107400_b35","doi-asserted-by":"crossref","first-page":"4919","DOI":"10.1364\/AO.26.004919","article-title":"ART2: self-organization of stable category recognition codes for analog input pattern","volume":"26","author":"Carpenter","year":"1987","journal-title":"Appl. Opt."},{"key":"10.1016\/j.asoc.2021.107400_b36","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","year":"2006"},{"key":"10.1016\/j.asoc.2021.107400_b37","series-title":"Pattern Classification and Scene Analysis","author":"Duda","year":"1973"},{"issue":"96","key":"10.1016\/j.asoc.2021.107400_b38","first-page":"1","article-title":"PyOD: A python toolbox for scalable outlier detection","volume":"20","author":"Zhao","year":"2019","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.asoc.2021.107400_b39","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.fss.2018.10.012","article-title":"Fuzzy model-based control of a quadrotor","volume":"371","author":"Wan\u00a0Kim","year":"2019","journal-title":"Fuzzy Sets and Systems"}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494621003239?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494621003239?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,6,12]],"date-time":"2021-06-12T14:25:18Z","timestamp":1623507918000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494621003239"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":39,"alternative-id":["S1568494621003239"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2021.107400","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Hybrid AI system based on ART neural network and Mixture of Gaussians modules with application to intelligent monitoring of the wind turbine","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2021.107400","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107400"}}