{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:12:02Z","timestamp":1726762322530},"reference-count":152,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2021,8]]},"DOI":"10.1016\/j.asoc.2021.107353","type":"journal-article","created":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T04:43:24Z","timestamp":1617252204000},"page":"107353","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":72,"special_numbering":"C","title":["Attribute reduction methods in fuzzy rough set theory: An overview, comparative experiments, and new directions"],"prefix":"10.1016","volume":"107","author":[{"given":"Zhong","family":"Yuan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7225-5577","authenticated-orcid":false,"given":"Hongmei","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Pengfei","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jia","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7780-104X","authenticated-orcid":false,"given":"Tianrui","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b1","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1109\/TKDE.2011.220","article-title":"A rough-set based incremental approach for updating approximations under dynamic maintenance environments","volume":"25","author":"Chen","year":"2013","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b2","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/S0957-4174(00)00024-5","article-title":"Learning a coverage set of maximally general fuzzy rules by rough sets","volume":"19","author":"Hong","year":"2000","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.asoc.2008.05.006","article-title":"Dimensionality reduction based on rough set theory: A review","volume":"9","author":"Thangavel","year":"2009","journal-title":"Appl. Soft Comput."},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b4","doi-asserted-by":"crossref","first-page":"458","DOI":"10.1016\/j.ins.2008.10.010","article-title":"A new measure of uncertainty based on knowledge granulation for rough sets","volume":"179","author":"Liang","year":"2009","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.107353_b5","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.ins.2020.03.085","article-title":"Key energy-consumption feature selection of thermal power systems based on robust attribute reduction with rough sets","volume":"532","author":"Dong","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.107353_b6","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.inffus.2020.11.004","article-title":"Multi-source information fusion based on rough set theory: A review","volume":"68","author":"Zhang","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.asoc.2021.107353_b7","doi-asserted-by":"crossref","unstructured":"X.Y. Zhang, H. Yao, Z.Y. Lv, D.Q. Miao, Class-specific information measures and attribute reducts for hierarchy and systematicness, Inform. Sci., https:\/\/doi.org\/10.1016\/j.ins.2021.01.080.","DOI":"10.1016\/j.ins.2021.01.080"},{"issue":"11","key":"10.1016\/j.asoc.2021.107353_b8","doi-asserted-by":"crossref","first-page":"1649","DOI":"10.1109\/TKDE.2010.260","article-title":"Kernelized fuzzy rough sets and their applications","volume":"23","author":"Hu","year":"2011","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"2\u20133","key":"10.1016\/j.asoc.2021.107353_b9","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1080\/03081079008935107","article-title":"Rough fuzzy sets and fuzzy rough sets","volume":"17","author":"Dubois","year":"1990","journal-title":"Int. J. Gen. Syst."},{"key":"10.1016\/j.asoc.2021.107353_b10","series-title":"Intelligent Decision Support","first-page":"203","article-title":"Putting rough sets and fuzzy sets together","author":"Dubois","year":"1992"},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b11","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/S0165-0114(01)00032-X","article-title":"A comparative study of fuzzy rough sets","volume":"126","author":"Radzikowska","year":"2002","journal-title":"Fuzzy Sets and Systems"},{"issue":"1\u20134","key":"10.1016\/j.asoc.2021.107353_b12","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.ins.2003.08.017","article-title":"An axiomatic characterization of a fuzzy generalization of rough sets","volume":"160","author":"Mi","year":"2004","journal-title":"Inform. Sci."},{"issue":"3","key":"10.1016\/j.asoc.2021.107353_b13","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1109\/TFUZZ.2004.841734","article-title":"On the generalization of fuzzy rough sets","volume":"13","author":"Yeung","year":"2005","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"13","key":"10.1016\/j.asoc.2021.107353_b14","doi-asserted-by":"crossref","first-page":"1787","DOI":"10.1016\/j.fss.2006.01.007","article-title":"On the T-transitivity of kernels","volume":"157","author":"Moser","year":"2006","journal-title":"Fuzzy Sets and Systems"},{"issue":"16","key":"10.1016\/j.asoc.2021.107353_b15","doi-asserted-by":"crossref","first-page":"3203","DOI":"10.1016\/j.ins.2008.03.013","article-title":"Generalized fuzzy rough sets determined by a triangular norm","volume":"178","author":"Mi","year":"2008","journal-title":"Inform. Sci."},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b16","doi-asserted-by":"crossref","first-page":"1325","DOI":"10.1109\/TFUZZ.2013.2291570","article-title":"Attribute reduction for heterogeneous data based on the combination of classical and fuzzy rough set models","volume":"22","author":"Chen","year":"2014","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b17","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.fss.2011.01.016","article-title":"Robust fuzzy rough classifiers","volume":"183","author":"Hu","year":"2011","journal-title":"Fuzzy Sets and Systems"},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b18","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1109\/TFUZZ.2014.2327993","article-title":"A novel approach to building a robust fuzzy rough classifier","volume":"23","author":"Zhao","year":"2014","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b19","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1109\/TSMCB.2010.2050684","article-title":"Fuzzy\u2013rough supervised attribute clustering algorithm and classification of microarray data","volume":"41","author":"Maji","year":"2010","journal-title":"IEEE Trans. Syst. Man Cybern. B"},{"issue":"20","key":"10.1016\/j.asoc.2021.107353_b20","doi-asserted-by":"crossref","first-page":"4493","DOI":"10.1016\/j.ins.2007.04.010","article-title":"Learning fuzzy rules from fuzzy samples based on rough set technique","volume":"177","author":"Wang","year":"2007","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b21","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/s10044-007-0080-z","article-title":"FRCT: fuzzy-rough classification trees","volume":"11","author":"Bhatt","year":"2008","journal-title":"Pattern Anal. Appl."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b22","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.imavis.2006.01.026","article-title":"Fuzzy rough sets hybrid scheme for breast cancer detection","volume":"25","author":"Hassanien","year":"2007","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.asoc.2021.107353_b23","series-title":"Proceedings of the 24th International Conference on Machine Learning","first-page":"823","article-title":"Supervised feature selection via dependence estimation","author":"Song","year":"2007"},{"key":"10.1016\/j.asoc.2021.107353_b24","series-title":"Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing","first-page":"185","article-title":"Semi-supervised fuzzy-rough feature selection","author":"Jensen","year":"2015"},{"key":"10.1016\/j.asoc.2021.107353_b25","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/j.knosys.2018.11.034","article-title":"Rough set based semi-supervised feature selection via ensemble selector","volume":"165","author":"Liu","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"3","key":"10.1016\/j.asoc.2021.107353_b26","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1109\/34.990133","article-title":"Unsupervised feature selection using feature similarity","volume":"24","author":"Mitra","year":"2002","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.asoc.2021.107353_b27","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.ins.2012.12.001","article-title":"Unsupervised fuzzy-rough set-based dimensionality reduction","volume":"229","author":"Mac\u00a0Parthal\u00e1In","year":"2013","journal-title":"Inform. Sci."},{"issue":"1\u20132","key":"10.1016\/j.asoc.2021.107353_b28","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/S0004-3702(03)00079-1","article-title":"Consistency-based search in feature selection","volume":"151","author":"Dash","year":"2003","journal-title":"Artificial Intelligence"},{"issue":"Aug","key":"10.1016\/j.asoc.2021.107353_b29","first-page":"845","article-title":"Feature selection for unsupervised learning","volume":"5","author":"Dy","year":"2004","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.asoc.2021.107353_b30","series-title":"29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015","first-page":"470","article-title":"Embedded unsupervised feature selection","author":"Wang","year":"2015"},{"key":"10.1016\/j.asoc.2021.107353_b31","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.patcog.2016.02.013","article-title":"Feature selection in mixed data: A method using a novel fuzzy rough set-based information entropy","volume":"56","author":"Zhang","year":"2016","journal-title":"Pattern Recognit."},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b32","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1109\/TFUZZ.2019.2953024","article-title":"Fusing fuzzy monotonic decision trees","volume":"28","author":"Wang","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b33","series-title":"Mathematical Methods in Interdisciplinary Sciences","first-page":"145","article-title":"Fuzzy rough set theory-based feature selection: A review","author":"Som","year":"2020"},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b34","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/0165-0114(95)00404-1","article-title":"Approximation of fuzzy concepts in decision making","volume":"85","author":"Bodjanova","year":"1997","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.asoc.2021.107353_b35","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/S0020-0255(02)00379-1","article-title":"Generalized fuzzy rough sets","volume":"151","author":"Wu","year":"2003","journal-title":"Inform. Sci."},{"issue":"3\u20134","key":"10.1016\/j.asoc.2021.107353_b36","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.ins.2003.08.005","article-title":"Constructive and axiomatic approaches of fuzzy approximation operators","volume":"159","author":"Wu","year":"2004","journal-title":"Inform. Sci."},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b37","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1016\/j.ijar.2010.01.004","article-title":"Gaussian kernel based fuzzy rough sets: Model, uncertainty measures and applications","volume":"51","author":"Hu","year":"2010","journal-title":"Internat. J. Approx. Reason."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b38","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/0165-0114(92)90187-9","article-title":"Fuzzy rough sets: application to feature selection","volume":"51","author":"Kuncheva","year":"1992","journal-title":"Fuzzy Sets and Systems"},{"issue":"3","key":"10.1016\/j.asoc.2021.107353_b39","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1016\/S0165-0114(03)00021-6","article-title":"Fuzzy\u2013rough attribute reduction with application to web categorization","volume":"141","author":"Jensen","year":"2004","journal-title":"Fuzzy Sets and Systems"},{"year":"2017","series-title":"UCI Machine Learning Repository","author":"Dheeru","key":"10.1016\/j.asoc.2021.107353_b40"},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b41","doi-asserted-by":"crossref","first-page":"824","DOI":"10.1109\/TFUZZ.2008.924209","article-title":"New approaches to fuzzy-rough feature selection","volume":"17","author":"Jensen","year":"2009","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b42","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.fss.2014.04.029","article-title":"Fuzzy-rough feature selection accelerator","volume":"258","author":"Qian","year":"2015","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.asoc.2021.107353_b43","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.fss.2019.07.014","article-title":"A graph approach for fuzzy-rough feature selection","volume":"391","author":"Chen","year":"2020","journal-title":"Fuzzy Sets and Systems"},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b44","doi-asserted-by":"crossref","first-page":"741","DOI":"10.1109\/TFUZZ.2016.2574918","article-title":"A fitting model for feature selection with fuzzy rough sets","volume":"25","author":"Wang","year":"2017","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b45","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.knosys.2018.04.004","article-title":"Attribute reduction for multi-label learning with fuzzy rough set","volume":"152","author":"Lin","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.asoc.2021.107353_b46","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.eswa.2018.06.013","article-title":"Hybrid data-driven outlier detection based on neighborhood information entropy and its developmental measures","volume":"112","author":"Yuan","year":"2018","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2021.107353_b47","doi-asserted-by":"crossref","unstructured":"Z. Yuan, H.M. Chen, T.R. Li, J. Liu, S. Wang, Fuzzy information entropy-based adaptive approach for hybrid feature outlier detection, Fuzzy Sets and Systems, https:\/\/doi.org\/10.1016\/j.fss.2020.10.017.","DOI":"10.1016\/j.fss.2020.10.017"},{"issue":"3\u20134","key":"10.1016\/j.asoc.2021.107353_b48","first-page":"181","article-title":"The rule induction system LERS-a version for personal computers","volume":"18","author":"Chmielewski","year":"1993","journal-title":"Found. Comput. Decision Sci."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b49","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1007\/BF00116251","article-title":"Induction of decision trees","volume":"1","author":"Quinlan","year":"1986","journal-title":"Mach. Learn."},{"issue":"1\u20134","key":"10.1016\/j.asoc.2021.107353_b50","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/S0020-0255(98)10019-1","article-title":"Rough set approach to incomplete information systems","volume":"112","author":"Kryszkiewicz","year":"1998","journal-title":"Inform. Sci."},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b51","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1109\/TC.1977.1674849","article-title":"A recursive partitioning decision rule for nonparametric classification","volume":"26","author":"Friedman","year":"1977","journal-title":"IEEE Trans. Comput."},{"key":"10.1016\/j.asoc.2021.107353_b52","series-title":"Proceedings of the Sixth International Workshop on Machine Learning","first-page":"164","article-title":"Unknown attribute values in induction","author":"Quinlan","year":"1989"},{"key":"10.1016\/j.asoc.2021.107353_b53","doi-asserted-by":"crossref","unstructured":"J.W. Grzymala-Busse, On the unknown attribute values in learning from examples, in: International Symposium on Methodologies for Intelligent Systems, 1991, pp. 368\u2013377.","DOI":"10.1007\/3-540-54563-8_100"},{"year":"2011","series-title":"Data Mining: Concepts and Techniques","author":"Han","key":"10.1016\/j.asoc.2021.107353_b54"},{"key":"10.1016\/j.asoc.2021.107353_b55","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.knosys.2018.10.038","article-title":"Fuzzy rough set-based attribute reduction using distance measures","volume":"164","author":"Wang","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"3","key":"10.1016\/j.asoc.2021.107353_b56","doi-asserted-by":"crossref","first-page":"1135","DOI":"10.1016\/j.asoc.2006.10.004","article-title":"Uncertainty measures for fuzzy relations and their applications","volume":"7","author":"Yu","year":"2007","journal-title":"Appl. Soft Comput."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b57","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1109\/TFUZZ.2005.864086","article-title":"Fuzzy probabilistic approximation spaces and their information measures","volume":"14","author":"Hu","year":"2006","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b58","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.ins.2009.09.008","article-title":"Attribute selection with fuzzy decision reducts","volume":"180","author":"Cornelis","year":"2010","journal-title":"Inform. Sci."},{"issue":"Dec","key":"10.1016\/j.asoc.2021.107353_b59","first-page":"2075","article-title":"Kernel methods for measuring independence","volume":"6","author":"Gretton","year":"2005","journal-title":"J. Mach. Learn. Res."},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b60","doi-asserted-by":"crossref","first-page":"818","DOI":"10.1109\/TFUZZ.2019.2949765","article-title":"Fuzzy rough attribute reduction for categorical data","volume":"28","author":"Wang","year":"2020","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"7","key":"10.1016\/j.asoc.2021.107353_b61","doi-asserted-by":"crossref","first-page":"1351","DOI":"10.1016\/j.patcog.2003.10.016","article-title":"Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring","volume":"37","author":"Shen","year":"2004","journal-title":"Pattern Recognit."},{"issue":"12","key":"10.1016\/j.asoc.2021.107353_b62","doi-asserted-by":"crossref","first-page":"1457","DOI":"10.1109\/TKDE.2004.96","article-title":"Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches","volume":"16","author":"Jensen","year":"2004","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b63","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1016\/j.fss.2004.07.014","article-title":"Fuzzy-rough data reduction with ant colony optimization","volume":"149","author":"Jensen","year":"2005","journal-title":"Fuzzy Sets and Systems"},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b64","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1109\/TFUZZ.2006.889761","article-title":"Fuzzy-rough sets assisted attribute selection","volume":"15","author":"Jensen","year":"2007","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b65","doi-asserted-by":"crossref","first-page":"1130","DOI":"10.1109\/TFUZZ.2006.889960","article-title":"Attributes reduction using fuzzy rough sets","volume":"16","author":"Tsang","year":"2008","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"7","key":"10.1016\/j.asoc.2021.107353_b66","doi-asserted-by":"crossref","first-page":"965","DOI":"10.1016\/j.patrec.2004.09.044","article-title":"On fuzzy-rough sets approach to feature selection","volume":"26","author":"Bhatt","year":"2005","journal-title":"Pattern Recognit. Lett."},{"issue":"11","key":"10.1016\/j.asoc.2021.107353_b67","doi-asserted-by":"crossref","first-page":"1632","DOI":"10.1016\/j.patrec.2005.01.006","article-title":"On the compact computational domain of fuzzy-rough sets","volume":"26","author":"Bhatt","year":"2005","journal-title":"Pattern Recognit. Lett."},{"issue":"12","key":"10.1016\/j.asoc.2021.107353_b68","doi-asserted-by":"crossref","first-page":"3509","DOI":"10.1016\/j.patcog.2007.03.017","article-title":"Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation","volume":"40","author":"Hu","year":"2007","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.asoc.2021.107353_b69","doi-asserted-by":"crossref","first-page":"1456","DOI":"10.1109\/TFUZZ.2009.2026639","article-title":"Are more features better? a response to attributes reduction using fuzzy rough sets","volume":"17","author":"Jensen","year":"2009","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b70","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.neunet.2013.07.008","article-title":"Fuzzy rough sets, and a granular neural network for unsupervised feature selection","volume":"48","author":"Ganivada","year":"2013","journal-title":"Neural Netw."},{"issue":"6","key":"10.1016\/j.asoc.2021.107353_b71","doi-asserted-by":"crossref","first-page":"981","DOI":"10.1007\/s13042-014-0242-4","article-title":"Dynamic updating multigranulation fuzzy rough set: approximations and reducts","volume":"5","author":"Ju","year":"2014","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.asoc.2021.107353_b72","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.fss.2014.08.014","article-title":"A fuzzy rough set approach for incremental feature selection on hybrid information systems","volume":"258","author":"Zeng","year":"2015","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.asoc.2021.107353_b73","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.knosys.2016.08.009","article-title":"Feature subset selection based on fuzzy neighborhood rough sets","volume":"111","author":"Wang","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.asoc.2021.107353_b74","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.ins.2016.04.005","article-title":"Fuzzy rough approximations for set-valued data","volume":"360","author":"Wei","year":"2016","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.107353_b75","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.neucom.2018.08.065","article-title":"Feature selection for multi-label learning based on kernelized fuzzy rough sets","volume":"318","author":"Li","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2021.107353_b76","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.knosys.2018.03.031","article-title":"A fuzzy rough set-based feature selection method using representative instances","volume":"151","author":"Zhang","year":"2018","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b77","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1109\/TFUZZ.2017.2647966","article-title":"Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets","volume":"26","author":"Hu","year":"2018","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b78","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.compind.2018.01.014","article-title":"A novel feature selection method using fuzzy rough sets","volume":"97","author":"Sheeja","year":"2018","journal-title":"Comput. Ind."},{"issue":"10","key":"10.1016\/j.asoc.2021.107353_b79","doi-asserted-by":"crossref","first-page":"1891","DOI":"10.1109\/TFUZZ.2019.2892349","article-title":"Fuzzy rough set based feature selection for large-scale hierarchical classification","volume":"27","author":"Zhao","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b80","series-title":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","first-page":"148","article-title":"A robust fuzzy rough set method based on multi-kernel and fuzzy decision for feature selection","author":"Wang","year":"2019"},{"key":"10.1016\/j.asoc.2021.107353_b81","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.ins.2019.07.038","article-title":"PARA: A positive-region based attribute reduction accelerator","volume":"503","author":"Ni","year":"2019","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.107353_b82","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.ins.2020.04.038","article-title":"Incremental feature selection based on fuzzy rough sets","volume":"536","author":"Ni","year":"2020","journal-title":"Inform. Sci."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b83","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1109\/TFUZZ.2010.2095461","article-title":"Information granularity in fuzzy binary GrC model","volume":"19","author":"Qian","year":"2010","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b84","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2019\/6705648","article-title":"Feature genes selection using fuzzy rough uncertainty metric for tumor diagnosis","author":"Xu","year":"2019","journal-title":"Comput. Math. Methods Med."},{"issue":"3","key":"10.1016\/j.asoc.2021.107353_b85","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1002\/j.1538-7305.1948.tb01338.x","article-title":"A mathematical theory of communication","volume":"27","author":"Shannon","year":"1948","journal-title":"Bell Syst. Tech. J."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b86","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1016\/0022-247X(68)90078-4","article-title":"Probability measures of fuzzy events","volume":"23","author":"Zadeh","year":"1968","journal-title":"J. Math. Anal. Appl."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b87","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1080\/03081070512331318329","article-title":"An uncertainty measure in partition-based fuzzy rough sets","volume":"34","author":"Mi","year":"2005","journal-title":"Int. J. Gen. Syst."},{"issue":"6","key":"10.1016\/j.asoc.2021.107353_b88","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1080\/03081070600687668","article-title":"Information entropy, rough entropy and knowledge granulation in incomplete information systems","volume":"35","author":"Liang","year":"2006","journal-title":"Int. J. Gen. Syst."},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b89","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1016\/j.patrec.2005.09.004","article-title":"Information-preserving hybrid data reduction based on fuzzy-rough techniques","volume":"27","author":"Hu","year":"2006","journal-title":"Pattern Recognit. Lett."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b90","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1109\/TFUZZ.2007.896321","article-title":"Comments on \u201cFuzzy probabilistic approximation spaces and their information measures\u201d","volume":"16","author":"Hu","year":"2008","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b91","doi-asserted-by":"crossref","first-page":"901","DOI":"10.1109\/TFUZZ.2019.2959995","article-title":"Active incremental feature selection using a fuzzy-rough-set-based information entropy","volume":"28","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b92","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.fss.2018.07.006","article-title":"Uncertainty measures for general fuzzy relations","volume":"360","author":"Wang","year":"2019","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.asoc.2021.107353_b93","series-title":"2008 IEEE International Conference on Granular Computing","first-page":"101","article-title":"Fuzzy entropy based max-relevancy and min-redundancy feature selection","author":"An","year":"2008"},{"issue":"6","key":"10.1016\/j.asoc.2021.107353_b94","doi-asserted-by":"crossref","first-page":"1010","DOI":"10.1016\/j.camwa.2008.10.027","article-title":"Fuzzy-rough attribute reduction via mutual information with an application to cancer classification","volume":"57","author":"Xu","year":"2009","journal-title":"Comput. Math. Appl."},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b95","first-page":"619","article-title":"Fuzzy mutual information based min-redundancy and max-relevance heterogeneous feature selection","volume":"4","author":"Yu","year":"2011","journal-title":"Int. J. Comput. Intell. Syst."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b96","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.asoc.2012.07.029","article-title":"Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification","volume":"13","author":"Dai","year":"2013","journal-title":"Appl. Soft Comput."},{"issue":"6","key":"10.1016\/j.asoc.2021.107353_b97","doi-asserted-by":"crossref","first-page":"1491","DOI":"10.1109\/TFUZZ.2017.2735947","article-title":"Streaming feature selection for multilabel learning based on fuzzy mutual information","volume":"25","author":"Lin","year":"2017","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b98","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.112845","article-title":"Adaptive intrusion detection via GA-GOGMM-based pattern learning with fuzzy rough set-based attribute selection","volume":"139","author":"Liu","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2021.107353_b99","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106342","article-title":"Novel multi-label feature selection via label symmetric uncertainty correlation learning and feature redundancy evaluation","volume":"207","author":"Dai","year":"2020","journal-title":"Knowl.-Based Syst."},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b100","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1080\/0308107021000013635","article-title":"A new method for measuring uncertainty and fuzziness in rough set theory","volume":"31","author":"Liang","year":"2002","journal-title":"Int. J. Gen. Syst."},{"issue":"7","key":"10.1016\/j.asoc.2021.107353_b101","doi-asserted-by":"crossref","first-page":"1997","DOI":"10.1007\/s00500-014-1387-5","article-title":"Complement information entropy for uncertainty measure in fuzzy rough set and its applications","volume":"19","author":"Zhao","year":"2015","journal-title":"Soft Comput."},{"key":"10.1016\/j.asoc.2021.107353_b102","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.asoc.2020.106299","article-title":"Feature selection via normative fuzzy information weight with application in biological data classification","volume":"92","author":"Dai","year":"2020","journal-title":"Appl. Soft Comput."},{"issue":"1\u20134","key":"10.1016\/j.asoc.2021.107353_b103","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/S0020-0255(98)00019-X","article-title":"Information-theoretic measures of uncertainty for rough sets and rough relational databases","volume":"109","author":"Beaubouef","year":"1998","journal-title":"Inform. Sci."},{"issue":"3","key":"10.1016\/j.asoc.2021.107353_b104","doi-asserted-by":"crossref","first-page":"741","DOI":"10.1109\/TSMCB.2009.2028433","article-title":"Fuzzy\u2013rough sets for information measures and selection of relevant genes from microarray data","volume":"40","author":"Maji","year":"2009","journal-title":"IEEE Trans. Syst. Man Cybern. B"},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b105","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1007\/s13042-012-0090-z","article-title":"Consistency-preserving attribute reduction in fuzzy rough set framework","volume":"4","author":"Qian","year":"2013","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.asoc.2021.107353_b106","series-title":"2017 Innovations in Power and Advanced Computing Technologies (I-PACT)","first-page":"1","article-title":"Hybrid information gain based fuzzy rough set feature selection in cancer microarray data","author":"Chinnaswamy","year":"2017"},{"key":"10.1016\/j.asoc.2021.107353_b107","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.neucom.2018.10.112","article-title":"Non-unique decision differential entropy-based feature selection","volume":"393","author":"Qu","year":"2020","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b108","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.ins.2020.11.021","article-title":"Attribute reduction with fuzzy rough self-information measures","volume":"49","author":"Wang","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.107353_b109","article-title":"Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets","author":"Sun","year":"2020","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b110","series-title":"Intelligent Decision Support","first-page":"331","article-title":"The discernibility matrices and functions in information systems","author":"Skowron","year":"1992"},{"issue":"13","key":"10.1016\/j.asoc.2021.107353_b111","doi-asserted-by":"crossref","first-page":"1871","DOI":"10.1016\/j.fss.2009.12.010","article-title":"Local reduction of decision system with fuzzy rough sets","volume":"161","author":"Chen","year":"2010","journal-title":"Fuzzy Sets and Systems"},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b112","doi-asserted-by":"crossref","first-page":"689","DOI":"10.1016\/j.knosys.2011.02.009","article-title":"Fuzzy rough set based attribute reduction for information systems with fuzzy decisions","volume":"24","author":"He","year":"2011","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b113","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1109\/TFUZZ.2011.2173695","article-title":"A novel algorithm for finding reducts with fuzzy rough sets","volume":"20","author":"Chen","year":"2012","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b114","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.fss.2013.03.005","article-title":"Fuzzy rough set model for set-valued data","volume":"229","author":"Dai","year":"2013","journal-title":"Fuzzy Sets and Systems"},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b115","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1109\/TFUZZ.2012.2231417","article-title":"RFRR: Robust fuzzy rough reduction","volume":"21","author":"Zhao","year":"2013","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b116","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.ins.2013.07.033","article-title":"Finding rough and fuzzy-rough set reducts with SAT","volume":"255","author":"Jensen","year":"2014","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.107353_b117","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.fss.2016.08.001","article-title":"Fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving","volume":"312","author":"Yang","year":"2017","journal-title":"Fuzzy Sets and Systems"},{"issue":"4","key":"10.1016\/j.asoc.2021.107353_b118","doi-asserted-by":"crossref","first-page":"2174","DOI":"10.1109\/TFUZZ.2017.2768044","article-title":"Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets","volume":"26","author":"Dai","year":"2018","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"3","key":"10.1016\/j.asoc.2021.107353_b119","doi-asserted-by":"crossref","first-page":"1257","DOI":"10.1109\/TFUZZ.2017.2718492","article-title":"Incremental perspective for feature selection based on fuzzy rough sets","volume":"26","author":"Yang","year":"2018","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ijar.2019.11.010","article-title":"Discernibility matrix based incremental feature selection on fused decision tables","volume":"118","author":"Liu","year":"2020","journal-title":"Internat. J. Approx. Reason."},{"key":"10.1016\/j.asoc.2021.107353_b121","series-title":"2007 IEEE International Fuzzy Systems Conference","first-page":"1","article-title":"Tolerance-based and fuzzy-rough feature selection","author":"Jensen","year":"2007"},{"key":"10.1016\/j.asoc.2021.107353_b122","series-title":"2009 IEEE International Conference on Fuzzy Systems","first-page":"610","article-title":"Interval-valued fuzzy-rough feature selection in datasets with missing values","author":"Jensen","year":"2009"},{"issue":"22","key":"10.1016\/j.asoc.2021.107353_b123","doi-asserted-by":"crossref","first-page":"4384","DOI":"10.1016\/j.ins.2010.07.010","article-title":"Soft fuzzy rough sets for robust feature evaluation and selection","volume":"180","author":"Hu","year":"2010","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b124","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1016\/j.ijar.2013.09.007","article-title":"Multi-adjoint fuzzy rough sets: Definition, properties and attribute selection","volume":"55","author":"Cornelis","year":"2014","journal-title":"Internat. J. Approx. Reason."},{"key":"10.1016\/j.asoc.2021.107353_b125","series-title":"2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","first-page":"1","article-title":"Simultaneous feature and instance selection using fuzzy-rough bireducts","author":"Mac\u00a0Parthal\u00e1in","year":"2013"},{"key":"10.1016\/j.asoc.2021.107353_b126","series-title":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","first-page":"1","article-title":"Fuzzy-rough feature selection using flock of starlings optimisation","author":"Mac\u00a0Parthal\u00e1in","year":"2015"},{"key":"10.1016\/j.asoc.2021.107353_b127","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2015.06.025","article-title":"Towards scalable fuzzy\u2013rough feature selection","volume":"323","author":"Jensen","year":"2015","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2021.107353_b128","series-title":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","first-page":"1","article-title":"A hybrid approach to feature selection using correlation coefficient and fuzzy rough quick reduct algorithm applied to cancer microarray data","author":"Arunkumar","year":"2016"},{"key":"10.1016\/j.asoc.2021.107353_b129","series-title":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","first-page":"934","article-title":"A new fuzzy-rough feature selection algorithm for mammographic risk analysis","author":"Guo","year":"2016"},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b130","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13042-014-0232-6","article-title":"Feature and instance reduction for PNN classifiers based on fuzzy rough sets","volume":"7","author":"Tsang","year":"2016","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.asoc.2021.107353_b131","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.knosys.2016.12.024","article-title":"Different classes\u2019 ratio fuzzy rough set based robust feature selection","volume":"120","author":"Li","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.asoc.2021.107353_b132","series-title":"2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS)","first-page":"1","article-title":"Associated multi-label fuzzy-rough feature selection","author":"Qu","year":"2017"},{"key":"10.1016\/j.asoc.2021.107353_b133","series-title":"2018 Tenth International Conference on Advanced Computational Intelligence (ICACI)","first-page":"776","article-title":"A Laplace distribution-based fuzzy-rough feature selection algorithm","author":"Han","year":"2018"},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b134","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.fcij.2018.02.002","article-title":"Attribute selection using fuzzy roughset based customized similarity measure for lung cancer microarray gene expression data","volume":"3","author":"Arunkumar","year":"2018","journal-title":"Future Comput. Inform. J."},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b135","doi-asserted-by":"crossref","first-page":"423","DOI":"10.3233\/JIFS-17178","article-title":"Dominance-based fuzzy rough set approach for incomplete interval-valued data","volume":"34","author":"Dai","year":"2018","journal-title":"J. Intell. Fuzzy Systems"},{"key":"10.1016\/j.asoc.2021.107353_b136","series-title":"Pacific Rim International Conference on Artificial Intelligence","first-page":"91","article-title":"Fuzzy rough based feature selection by using random sampling","author":"Wang","year":"2018"},{"key":"10.1016\/j.asoc.2021.107353_b137","series-title":"Computational Intelligence: Theories, Applications and Future Directions-Volume II","first-page":"137","article-title":"Fuzzy rough set-based feature selection with improved seed population in PSO and IDS","author":"Maini","year":"2019"},{"issue":"5","key":"10.1016\/j.asoc.2021.107353_b138","doi-asserted-by":"crossref","first-page":"846","DOI":"10.1109\/TFUZZ.2019.2955894","article-title":"Distributed feature selection for big data using fuzzy rough sets","volume":"28","author":"Kong","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2021.107353_b139","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.engappai.2019.103421","article-title":"A fitting model based intuitionistic fuzzy rough feature selection","volume":"89","author":"Jain","year":"2020","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.asoc.2021.107353_b140","doi-asserted-by":"crossref","unstructured":"M. Hu, E. Tsang, Y.T. Guo, W.H. Xu, Fast and robust attribute reduction based on the separability in fuzzy decision systems, IEEE Trans. Cybern. , https:\/\/doi.org\/10.1109\/TCYB.2020.3040803.","DOI":"10.1109\/TCYB.2020.3040803"},{"issue":"11","key":"10.1016\/j.asoc.2021.107353_b141","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1145\/361219.361220","article-title":"A vector space model for automatic indexing","volume":"18","author":"Salton","year":"1975","journal-title":"Commun. ACM"},{"issue":"11","key":"10.1016\/j.asoc.2021.107353_b142","doi-asserted-by":"crossref","first-page":"1022","DOI":"10.1145\/182.358466","article-title":"Extended Boolean information retrieval","volume":"26","author":"Salton","year":"1983","journal-title":"Commun. ACM"},{"key":"10.1016\/j.asoc.2021.107353_b143","doi-asserted-by":"crossref","first-page":"2855","DOI":"10.1016\/j.neucom.2017.11.061","article-title":"Co-regularized unsupervised feature selection","volume":"275","author":"Zhu","year":"2018","journal-title":"Neurocomputing"},{"issue":"336","key":"10.1016\/j.asoc.2021.107353_b144","doi-asserted-by":"crossref","first-page":"846","DOI":"10.1080\/01621459.1971.10482356","article-title":"Objective criteria for the evaluation of clustering methods","volume":"66","author":"Rand","year":"1971","journal-title":"J. Amer. Statist. Assoc."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b145","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1111\/j.1469-8137.1912.tb05611.x","article-title":"The distribution of the flora in the alpine zone. 1","volume":"11","author":"Jaccard","year":"1912","journal-title":"New. Phytol."},{"key":"10.1016\/j.asoc.2021.107353_b146","series-title":"ACM Sigmod Record","first-page":"37","article-title":"Outlier detection for high dimensional data","author":"Aggarwal","year":"2001"},{"key":"10.1016\/j.asoc.2021.107353_b147","series-title":"Outlier analysis","first-page":"75","author":"Aggarwal","year":"2015"},{"year":"2010","series-title":"Testing Statistical Hypotheses of Equivalence and Noninferiority","author":"Wellek","key":"10.1016\/j.asoc.2021.107353_b148"},{"issue":"7","key":"10.1016\/j.asoc.2021.107353_b149","doi-asserted-by":"crossref","first-page":"1895","DOI":"10.1162\/089976698300017197","article-title":"Approximate statistical tests for comparing supervised classification learning algorithms","volume":"10","author":"Dietterich","year":"1998","journal-title":"Neural Comput."},{"issue":"2","key":"10.1016\/j.asoc.2021.107353_b150","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/BF02295996","article-title":"Note on the sampling error of the difference between correlated proportions or percentages","volume":"12","author":"McNemar","year":"1947","journal-title":"Psychometrika"},{"issue":"1","key":"10.1016\/j.asoc.2021.107353_b151","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1214\/aoms\/1177731944","article-title":"A comparison of alternative tests of significance for the problem of m rankings","volume":"11","author":"Friedman","year":"1940","journal-title":"Ann. Math. Stat."},{"issue":"Jan","key":"10.1016\/j.asoc.2021.107353_b152","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494621002763?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494621002763?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T12:34:46Z","timestamp":1698842086000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494621002763"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8]]},"references-count":152,"alternative-id":["S1568494621002763"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2021.107353","relation":{},"ISSN":["1568-4946"],"issn-type":[{"type":"print","value":"1568-4946"}],"subject":[],"published":{"date-parts":[[2021,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Attribute reduction methods in fuzzy rough set theory: An overview, comparative experiments, and new directions","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2021.107353","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107353"}}