{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:19:16Z","timestamp":1727065156969},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61973203","51575212"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Natural Science Fund for Distinguished Young Scholars of China","award":["51825502"]},{"name":"Shanghai Key Laboratory of Power station Automation Technology"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2020,11]]},"DOI":"10.1016\/j.asoc.2020.106629","type":"journal-article","created":{"date-parts":[[2020,8,24]],"date-time":"2020-08-24T15:44:01Z","timestamp":1598283841000},"page":"106629","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":60,"special_numbering":"C","title":["An effective Iterated Greedy algorithm for the distributed permutation flowshop scheduling with due windows"],"prefix":"10.1016","volume":"96","author":[{"given":"Xue-Lei","family":"Jing","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5022-7946","authenticated-orcid":false,"given":"Quan-Ke","family":"Pan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1485-0722","authenticated-orcid":false,"given":"Liang","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Yu-Long","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.asoc.2020.106629_b1","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1016\/j.ejor.2009.01.008","article-title":"An improved genetic algorithm for the distributed and flexible job-shop scheduling problem","volume":"200","author":"De\u00a0Giovanni","year":"2010","journal-title":"European J. Oper. Res."},{"key":"10.1016\/j.asoc.2020.106629_b2","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1016\/j.cie.2017.06.025","article-title":"Iterated reference greedy algorithm for solving distributed no-idle permutation flowshop scheduling problems","volume":"110","author":"Ying","year":"2017","journal-title":"Comput. Ind. Eng."},{"issue":"4","key":"10.1016\/j.asoc.2020.106629_b3","doi-asserted-by":"crossref","first-page":"754","DOI":"10.1016\/j.cor.2009.06.019","article-title":"The distributed permutation flowshop scheduling problem","volume":"37","author":"Naderi","year":"2010","journal-title":"Comput. Oper. Res."},{"key":"10.1016\/j.asoc.2020.106629_b4","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.swevo.2016.06.002","article-title":"A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem","volume":"32","author":"Deng","year":"2017","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.asoc.2020.106629_b5","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1016\/j.eswa.2019.01.062","article-title":"Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem","volume":"124","author":"Pan","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2020.106629_b6","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.omega.2018.03.004","article-title":"Iterated greedy methods for the distributed permutation flowshop scheduling problem","volume":"83","author":"Ruiz","year":"2019","journal-title":"Omega"},{"key":"10.1016\/j.asoc.2020.106629_b7","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.cor.2016.11.022","article-title":"Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows","volume":"80","author":"Pan","year":"2017","journal-title":"Comput. Oper. Res."},{"issue":"2","key":"10.1016\/j.asoc.2020.106629_b8","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.ejor.2014.09.043","article-title":"A survey on scheduling problems with due windows","volume":"242","author":"Janiak","year":"2015","journal-title":"European J. Oper. Res."},{"key":"10.1016\/j.asoc.2020.106629_b9","series-title":"Annals of Discrete Mathematics, Vol. 5","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/S0167-5060(08)70356-X","article-title":"Optimization and approximation in deterministic sequencing and scheduling: a survey","author":"Graham","year":"1979"},{"issue":"3","key":"10.1016\/j.asoc.2020.106629_b10","doi-asserted-by":"crossref","first-page":"2033","DOI":"10.1016\/j.ejor.2005.12.009","article-title":"A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem","volume":"177","author":"Ruiz","year":"2007","journal-title":"European J. Oper. Res."},{"key":"10.1016\/j.asoc.2020.106629_b11","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.cor.2016.12.021","article-title":"An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem","volume":"81","author":"Dubois-Lacoste","year":"2017","journal-title":"Comput. Oper. Res."},{"issue":"1","key":"10.1016\/j.asoc.2020.106629_b12","first-page":"91","article-title":"A heuristic algorithm for the m machine, n job flowshop sequencing problem","volume":"8111","author":"Nawaz\u00a0Jr","year":"1983","journal-title":"Omega"},{"key":"10.1016\/j.asoc.2020.106629_b13","doi-asserted-by":"crossref","unstructured":"H. Liu, L. Gao, A discrete electromagnetism-like mechanism algorithm for solving distributed permutation flowshop scheduling problem, in: 2010 International Conference on Manufacturing Automation, Hong Kong, 2010, pp. 156-163.","DOI":"10.1109\/ICMA.2010.17"},{"key":"10.1016\/j.asoc.2020.106629_b14","first-page":"497","article-title":"A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem","volume":"4","author":"Gao","year":"2011","journal-title":"Int. J. Comput. Intell. Syst."},{"year":"2011","series-title":"An NEH-Based Heuristic Algorithm for Distributed Permutation Flowshop Scheduling Problems","author":"Gao","key":"10.1016\/j.asoc.2020.106629_b15"},{"issue":"5","key":"10.1016\/j.asoc.2020.106629_b16","first-page":"2025","article-title":"Solving multi-factory flowshop problems with a novel variable neighbourhood descent algorithm","volume":"8","author":"Gao","year":"2012","journal-title":"J. Comput. Inform. Syst."},{"key":"10.1016\/j.asoc.2020.106629_b17","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1080\/00207543.2011.644819","article-title":"An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem","volume":"51","author":"Gao","year":"2013","journal-title":"Int. J. Prod. Res."},{"key":"10.1016\/j.asoc.2020.106629_b18","doi-asserted-by":"crossref","first-page":"5029","DOI":"10.1080\/00207543.2013.790571","article-title":"Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm","volume":"51","author":"Lin","year":"2013","journal-title":"Int. J. Prod. Res."},{"issue":"1","key":"10.1016\/j.asoc.2020.106629_b19","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1016\/j.ijpe.2013.05.004","article-title":"An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem","volume":"145","author":"Wang","year":"2013","journal-title":"Int. J. Prod. Econ."},{"issue":"2","key":"10.1016\/j.asoc.2020.106629_b20","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1016\/j.ejor.2014.05.024","article-title":"A scatter search algorithm for the distributed permutation flowshop scheduling problem","volume":"239","author":"Naderi","year":"2014","journal-title":"European J. Oper. Res."},{"key":"10.1016\/j.asoc.2020.106629_b21","doi-asserted-by":"crossref","first-page":"1269","DOI":"10.1080\/0305215X.2013.827673","article-title":"An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem","volume":"46","author":"Xu","year":"2014","journal-title":"Eng. Optimiz."},{"key":"10.1016\/j.asoc.2020.106629_b22","doi-asserted-by":"crossref","first-page":"1111","DOI":"10.1080\/00207543.2014.948578","article-title":"A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem","volume":"53","author":"Fernandez-Viagas","year":"2015","journal-title":"Int. J. Prod. Res."},{"key":"10.1016\/j.asoc.2020.106629_b23","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.cie.2017.07.020","article-title":"A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion","volume":"111","author":"Bargaoui","year":"2017","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.asoc.2020.106629_b24","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1016\/j.cie.2018.03.014","article-title":"The distributed permutation flow shop to minimise the total flowtime","volume":"118","author":"Fernandez-Viagas","year":"2018","journal-title":"Comput. Ind. Eng."},{"issue":"5\u20136","key":"10.1016\/j.asoc.2020.106629_b25","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1007\/s00170-008-1618-y","article-title":"A genetic algorithm for solving no-wait flexible flow lines with due window and job rejection","volume":"42","author":"Jolai","year":"2009","journal-title":"Int. J. Adv. Manuf. Technol."},{"issue":"9\u201312","key":"10.1016\/j.asoc.2020.106629_b26","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.1007\/s00170-012-4112-5","article-title":"Multi-objective flexible flow lines with due window, time lag, and job rejection","volume":"64","author":"Sheikh","year":"2013","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.asoc.2020.106629_b27","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1016\/j.ins.2018.11.023","article-title":"Bicriterion scheduling with a negotiable common due window and resource-dependent processing times","volume":"478","author":"Wang","year":"2019","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2020.106629_b28","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.cie.2019.04.055","article-title":"The order scheduling problem of product-service system with time windows","volume":"133","author":"Zhang","year":"2019","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.asoc.2020.106629_b29","doi-asserted-by":"crossref","first-page":"780","DOI":"10.1016\/j.cie.2019.06.057","article-title":"Scheduling hybrid flowshop with sequence-dependent setup times and due windows to minimize total weighted earliness and tardiness","volume":"135","author":"Khare","year":"2019","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.asoc.2020.106629_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.scs.2019.101718","article-title":"Sustainability in a lot-sizing and scheduling problem with delivery time window and sequence-dependent setup cost consideration","volume":"51","author":"Vaez","year":"2019","journal-title":"Sustainable Cities Soc."},{"issue":"2","key":"10.1016\/j.asoc.2020.106629_b31","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.omega.2007.02.002","article-title":"New high performing heuristics for minimizing makespan in permutation flowshops","volume":"37","author":"Rad","year":"2009","journal-title":"Omega"},{"issue":"2","key":"10.1016\/j.asoc.2020.106629_b32","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1016\/j.ejor.2007.08.030","article-title":"A discrete particle swarm optimization for lot-streaming flowshop scheduling problem","volume":"191","author":"Tseng","year":"2008","journal-title":"Eur. J. Oper. Res."},{"key":"10.1016\/j.asoc.2020.106629_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.105492","article-title":"Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem","volume":"81","author":"Pan","year":"2019","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2020.106629_b34","unstructured":"T. St\u00fctzle, Applying Iterated Local Search To the Permutation Flow Shop Problem, Technical Report AIDA-98-04, FG Itellektik, FB Informatik, TU Darmstadt."},{"key":"10.1016\/j.asoc.2020.106629_b35","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.cie.2016.06.012","article-title":"A hybrid iterated greedy algorithm for total tardiness minimization in permutation flowshops","volume":"98","author":"Karabulut","year":"2016","journal-title":"Comput. Ind. Eng."},{"issue":"2","key":"10.1016\/j.asoc.2020.106629_b36","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1016\/0377-2217(93)90182-M","article-title":"Benchmarks for basic scheduling problems","volume":"64","author":"Taillard","year":"1993","journal-title":"European J. Oper. Res."},{"key":"10.1016\/j.asoc.2020.106629_b37","article-title":"A three-stage multi-objective approach based on decomposition for an energy-efficient hybrid flowshop scheduling problem","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Syst. Man, Cybern."},{"key":"10.1016\/j.asoc.2020.106629_b38","article-title":"Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots","author":"Li","year":"2019","journal-title":"Swarm. Evol. Comput."},{"issue":"2","key":"10.1016\/j.asoc.2020.106629_b39","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1111\/j.2164-0947.1953.tb01326.x","article-title":"Some selected quick and easy methods of statistical analysis","volume":"16","author":"Tukey","year":"1953","journal-title":"Trans. New York Acad. Sci."},{"key":"10.1016\/j.asoc.2020.106629_b40","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1109\/TSMC.2015.2416127","article-title":"An estimation of distribution algorithm based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem","volume":"46","author":"Wang","year":"2016","journal-title":"IEEE Trans. Syst Man Cybern. Syst."},{"key":"10.1016\/j.asoc.2020.106629_b41","doi-asserted-by":"crossref","first-page":"26046","DOI":"10.1109\/ACCESS.2017.2769100","article-title":"A hybrid chaotic biogeography based optimization for the sequence dependent setup times flowshop scheduling problem with weighted tardiness objective","volume":"5","author":"Wang","year":"2017","journal-title":"IEEE Access"},{"key":"10.1016\/j.asoc.2020.106629_b42","doi-asserted-by":"crossref","first-page":"542","DOI":"10.1109\/TCYB.2017.2780274","article-title":"Improving metaheuristic algorithms with information feedback models","volume":"49","author":"Wang","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.asoc.2020.106629_b43","article-title":"Meta-heuristic algorithm for solving vehicle routing problems with time windows and synchronized visit constraints in prefabricated systems","author":"Li","year":"2019","journal-title":"J. Clean Prod."},{"key":"10.1016\/j.asoc.2020.106629_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2020.100742","article-title":"An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times","volume":"59","author":"Huang","year":"2020","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.asoc.2020.106629_b45","doi-asserted-by":"crossref","unstructured":"W.Q. Zou, Q.K. Pan, T. Meng, L. Gao, Y.L. Wang, An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop, Expert Systems with Applications, http:\/\/dx.doi.org\/10.1016\/j.eswa.2020.113675.","DOI":"10.1016\/j.eswa.2020.113675"}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494620305676?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494620305676?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,9,3]],"date-time":"2021-09-03T20:09:33Z","timestamp":1630699773000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494620305676"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11]]},"references-count":45,"alternative-id":["S1568494620305676"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2020.106629","relation":{},"ISSN":["1568-4946"],"issn-type":[{"type":"print","value":"1568-4946"}],"subject":[],"published":{"date-parts":[[2020,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An effective Iterated Greedy algorithm for the distributed permutation flowshop scheduling with due windows","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2020.106629","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106629"}}