{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T19:40:21Z","timestamp":1722973221316},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61773401","11601524","11571368"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Foundation of Hubei Province of China","award":["17G024","2017132"]},{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"publisher","award":["FT100100748"],"id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1016\/j.asoc.2019.105827","type":"journal-article","created":{"date-parts":[[2019,10,9]],"date-time":"2019-10-09T15:33:41Z","timestamp":1570635221000},"page":"105827","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":40,"special_numbering":"C","title":["A clustering-based ensemble approach with improved pigeon-inspired optimization and extreme learning machine for air quality prediction"],"prefix":"10.1016","volume":"85","author":[{"given":"Feng","family":"Jiang","sequence":"first","affiliation":[]},{"given":"Jiaqi","family":"He","sequence":"additional","affiliation":[]},{"given":"Tianhai","family":"Tian","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2019.105827_b1","doi-asserted-by":"crossref","first-page":"67","DOI":"10.5572\/ajae.2016.10.2.067","article-title":"PM2.5 concentrations using artificial neural networks and markov chain, a case study karaj city","volume":"10","author":"Asadollahfardi","year":"2016","journal-title":"Asian J. Atmospheric Environ."},{"key":"10.1016\/j.asoc.2019.105827_b2","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1016\/j.asoc.2018.09.018","article-title":"A SVR-ann combined model based on ensemble EMD for rainfall prediction","volume":"73","author":"Xiang","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2019.105827_b3","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.atmosenv.2018.04.019","article-title":"Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment","volume":"184","author":"Johnson","year":"2018","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.asoc.2019.105827_b4","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.asoc.2014.02.015","article-title":"Dynamic classification of ballistic missiles using neural networks and hidden Markov models","volume":"19","author":"Singh","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2019.105827_b5","doi-asserted-by":"crossref","first-page":"866","DOI":"10.1109\/TNNLS.2012.2192135","article-title":"Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects","volume":"23","author":"Huang","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.asoc.2019.105827_b6","doi-asserted-by":"crossref","first-page":"365","DOI":"10.15837\/ijccc.2017.3.2907","article-title":"Modeling missing data for PM2.5 time series forecasting with computational intelligence","volume":"12","author":"Oprea","year":"2017","journal-title":"Int. J. Comput. Commun. Control"},{"key":"10.1016\/j.asoc.2019.105827_b7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/en11010001","article-title":"Short-term load forecasting with multi-source data using gated recurrent unit neural networks","volume":"11","author":"Wang","year":"2018","journal-title":"Energies"},{"key":"10.1016\/j.asoc.2019.105827_b8","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.neunet.2016.01.012","article-title":"Noise further expresses exponential decay for globally exponentially stable time-varying delayed neural networks","volume":"77","author":"Zhu","year":"2016","journal-title":"Neural Netw."},{"key":"10.1016\/j.asoc.2019.105827_b9","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.buildenv.2018.03.058","article-title":"Prediction of PM2.5concentration based on the similarity in air quality monitoring network","volume":"137","author":"He","year":"2018","journal-title":"Build. Environ."},{"key":"10.1016\/j.asoc.2019.105827_b10","doi-asserted-by":"crossref","first-page":"2220","DOI":"10.3390\/s18072220","article-title":"A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities","volume":"18","author":"Huang","year":"2018","journal-title":"Sensors"},{"key":"10.1016\/j.asoc.2019.105827_b11","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1016\/j.atmosenv.2014.12.058","article-title":"Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm","volume":"104","author":"Wang","year":"2015","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.asoc.2019.105827_b12","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1007\/s11063-012-9246-9","article-title":"Parallel chaos search based incremental extreme learning machine","volume":"37","author":"Yang","year":"2013","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.asoc.2019.105827_b13","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.buildenv.2014.04.011","article-title":"Prediction of particulate matter at urban intersection by using artificial neural networks combined with chaotic particle swarm optimization algorithm","volume":"78","author":"He","year":"2014","journal-title":"Build. Environ."},{"key":"10.1016\/j.asoc.2019.105827_b14","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.asoc.2017.06.044","article-title":"An efficient modified grey wolf optimizer with L\u00e9vy flight for optimization tasks","volume":"60","author":"Heidari","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2019.105827_b15","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1108\/IJICC-02-2014-0005","article-title":"Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning","volume":"7","author":"Duan","year":"2014","journal-title":"Int. J. Intell. Comput. Cybern."},{"key":"10.1016\/j.asoc.2019.105827_b16","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1166\/jbns.2018.1499","article-title":"A hybrid algorithm based on artificial bee colony and pigeon inspired optimization for 3D protein structure prediction","volume":"12","author":"Li","year":"2018","journal-title":"J. Bionanosci."},{"key":"10.1016\/j.asoc.2019.105827_b17","doi-asserted-by":"crossref","DOI":"10.1007\/s11432-018-9714-5","article-title":"Pigeon-inspired optimization and extreme learning machine via wavelet packet analysis for predicting bulk commodity futures prices","volume":"62","author":"Jiang","year":"2019","journal-title":"Sci. China Inf. Sci."},{"key":"10.1016\/j.asoc.2019.105827_b18","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1108\/AEAT-05-2014-0073","article-title":"Pigeon inspired optimization approach to model prediction control for unmanned air vehicles","volume":"88","author":"Dou","year":"2016","journal-title":"Aircr. Eng. Aerosp. Technol."},{"key":"10.1016\/j.asoc.2019.105827_b19","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1016\/j.atmosenv.2018.12.025","article-title":"Hybrid algorithm for short-term forecasting of PM2.5 in China","volume":"200","author":"Cheng","year":"2019","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.asoc.2019.105827_b20","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.atmosres.2017.10.009","article-title":"Research and application of a novel hybrid decomposition-ensemble learning paradigm with error correction for daily PM10","volume":"201","author":"Luo","year":"2018","journal-title":"Atmos. Res."},{"key":"10.1016\/j.asoc.2019.105827_b21","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/j.solener.2018.02.006","article-title":"A decomposition-clustering-ensemble learning approach for solar radiation forecasting","volume":"163","author":"Sun","year":"2018","journal-title":"Sol. Energy"},{"key":"10.1016\/j.asoc.2019.105827_b22","doi-asserted-by":"crossref","first-page":"1941","DOI":"10.3390\/ijerph15091941","article-title":"A hybrid forecasting approach to air quality time series based on endpoint condition and combined forecasting model","volume":"15","author":"Zhu","year":"2018","journal-title":"Int. J. Environ. Res. Public Health"},{"key":"10.1016\/j.asoc.2019.105827_b23","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1016\/j.apr.2018.03.008","article-title":"A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration","volume":"9","author":"Gan","year":"2018","journal-title":"Atmospheric Pollut. Res."},{"key":"10.1016\/j.asoc.2019.105827_b24","first-page":"1300","article-title":"A decomposition-optimization-ensemble learning approach for electricity price forecasting (in Chinese)","volume":"48","author":"Jiang","year":"2018","journal-title":"Sci. China (Information Sciences)"},{"key":"10.1016\/j.asoc.2019.105827_b25","doi-asserted-by":"crossref","first-page":"1499","DOI":"10.4310\/SII.2010.v3.n3.a1","article-title":"Singular spectrum analysis for time series: introduction to this special issue","volume":"3","author":"Zhigljavsky","year":"2010","journal-title":"Stat. Interface"},{"key":"10.1016\/j.asoc.2019.105827_b26","doi-asserted-by":"crossref","first-page":"108","DOI":"10.3390\/a10030108","article-title":"Performance analysis of four decomposition-ensemble models for one-day-ahead agricultural commodity futures price forecasting","volume":"10","author":"Wang","year":"2017","journal-title":"Algorithms"},{"key":"10.1016\/j.asoc.2019.105827_b27","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1016\/j.scitotenv.2016.12.018","article-title":"A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine","volume":"580","author":"Wang","year":"2017","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.asoc.2019.105827_b28","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1016\/B978-0-12-174590-5.50026-5","article-title":"Acoustic signal compression with wavelet packets","volume":"2","author":"Wickerhauser","year":"1992","journal-title":"Wavelets"},{"key":"10.1016\/j.asoc.2019.105827_b29","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1016\/j.measurement.2007.07.007","article-title":"EEG feature extraction based on wavelet packet decomposition for brain computer interface","volume":"41","author":"Wu","year":"2008","journal-title":"Measurement"},{"key":"10.1016\/j.asoc.2019.105827_b30","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.neucom.2018.06.032","article-title":"Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning","volume":"313","author":"Zhang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2019.105827_b31","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.eswa.2017.04.033","article-title":"Memory based hybrid dragonfly algorithm for numerical optimization problems","volume":"83","author":"Ranjini","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2019.105827_b32","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2019.105827_b33","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1007\/s12559-017-9451-y","article-title":"Dolphin swarm extreme learning machine","volume":"9","author":"Wu","year":"2017","journal-title":"Cognitive Computation"},{"key":"10.1016\/j.asoc.2019.105827_b34","doi-asserted-by":"crossref","first-page":"677","DOI":"10.1007\/s00500-016-2372-y","article-title":"Information discriminative extreme learning machine","volume":"22","author":"Yan","year":"2018","journal-title":"Soft Comput."},{"key":"10.1016\/j.asoc.2019.105827_b35","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.asoc.2015.03.036","article-title":"An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances","volume":"32","author":"Ahila","year":"2015","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2019.105827_b36","first-page":"1050","article-title":"Multidimensional scaling","volume":"46","author":"Cox","year":"2001","journal-title":"J. R. Stat. Soc."},{"key":"10.1016\/j.asoc.2019.105827_b37","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1016\/j.neucom.2013.07.052","article-title":"Modeling response properties of V2 neurons using a hierarchical K-means model","volume":"134","author":"Hu","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2019.105827_b38","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1198\/073500102753410444","article-title":"Comparing predictive accuracy","volume":"20","author":"Diebold","year":"2002","journal-title":"J. Bus. Econ. Stat."},{"key":"10.1016\/j.asoc.2019.105827_b39","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1080\/07350015.1992.10509922","article-title":"A simple nonparametric test of predictive performance","volume":"10","author":"Pesaran","year":"1992","journal-title":"J. Bus. Econ. Stat."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494619306088?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494619306088?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T19:56:07Z","timestamp":1721850967000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494619306088"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":39,"alternative-id":["S1568494619306088"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2019.105827","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2019,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A clustering-based ensemble approach with improved pigeon-inspired optimization and extreme learning machine for air quality prediction","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2019.105827","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105827"}}