{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:35:59Z","timestamp":1740119759103,"version":"3.37.3"},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61300167","61976120"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004608","name":"Natural Science Foundation of Jiangsu Province","doi-asserted-by":"publisher","award":["BK20151274","BK20191445"],"id":[{"id":"10.13039\/501100004608","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010014","name":"Six Talent Peaks Project of Jiangsu Province","doi-asserted-by":"publisher","award":["XYDXXJS-048"],"id":[{"id":"10.13039\/501100010014","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Jiangsu Provincial Government Scholarship Program","award":["JS-2016-065"]},{"DOI":"10.13039\/501100013088","name":"Qing Lan Project of Jiangsu Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013088","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Fund for Improvement of S&T Infrastructure in Higher Educational Institutions (FIST) Program of Department of Science and Technology","award":["SR\/FST\/ETI-335\/2013"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1016\/j.asoc.2019.105773","type":"journal-article","created":{"date-parts":[[2019,9,19]],"date-time":"2019-09-19T11:28:48Z","timestamp":1568892528000},"page":"105773","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":55,"special_numbering":"C","title":["A memetic algorithm using emperor penguin and social engineering optimization for medical data classification"],"prefix":"10.1016","volume":"85","author":[{"given":"Santos Kumar","family":"Baliarsingh","sequence":"first","affiliation":[]},{"given":"Weiping","family":"Ding","sequence":"additional","affiliation":[]},{"given":"Swati","family":"Vipsita","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6107-114X","authenticated-orcid":false,"given":"Sambit","family":"Bakshi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2019.105773_b1","series-title":"2017 14th IEEE India Council International Conference (INDICON)","first-page":"1","article-title":"Biclustering of microarray data employing multiobjective GA","author":"Acharya","year":"2017"},{"key":"10.1016\/j.asoc.2019.105773_b2","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.neucom.2012.06.009","article-title":"Integrating a differential evolution feature weighting scheme into prototype generation","volume":"97","author":"Triguero","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2019.105773_b3","doi-asserted-by":"crossref","first-page":"520","DOI":"10.1016\/j.asoc.2019.01.007","article-title":"Analysis of high-dimensional genomic data employing a novel bio-inspired algorithm","volume":"77","author":"Baliarsingh","year":"2019","journal-title":"Appl. Soft Comput."},{"issue":"1","key":"10.1016\/j.asoc.2019.105773_b4","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1049\/cje.2016.06.037","article-title":"A cascaded co-evolutionary model for attribute reduction and classification based on coordinating architecture with bidirectional elitist optimization","volume":"26","author":"Ding","year":"2017","journal-title":"Chin. J. Electron."},{"key":"10.1016\/j.asoc.2019.105773_b5","first-page":"1","article-title":"Deep neuro-cognitive co-evolution for Fuzzy attribute reduction by quantum leaping PSO with nearest-neighbor memeplexes","author":"Ding","year":"2018","journal-title":"IEEE Trans. Cybern."},{"issue":"3","key":"10.1016\/j.asoc.2019.105773_b6","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1109\/TFUZZ.2017.2717381","article-title":"A layered-coevolution-based attribute-boosted reduction using adaptive quantum-behavior PSO and its consistent segmentation for neonates brain tissue","volume":"26","author":"Ding","year":"2018","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"2","key":"10.1016\/j.asoc.2019.105773_b7","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/MCI.2018.2806997","article-title":"MC2ESVM: Multiclass classification based on cooperative evolution of support vector machines","volume":"13","author":"Rosales-P\u00e9rez","year":"2018","journal-title":"IEEE Comput. Intell. Mag."},{"issue":"2","key":"10.1016\/j.asoc.2019.105773_b8","article-title":"Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data","volume":"9","author":"Triguero","year":"2019","journal-title":"Wiley Interdisciplin. Rev.: Data Min. Knowl. Discov."},{"key":"10.1016\/j.asoc.2019.105773_b9","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.asoc.2017.03.016","article-title":"Cost-sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers","volume":"56","author":"Zhang","year":"2017","journal-title":"Appl. Soft Comput."},{"issue":"4","key":"10.1016\/j.asoc.2019.105773_b10","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1007\/s00354-015-0402-4","article-title":"Monotonic random forest with an ensemble pruning mechanism based on the degree of monotonicity","volume":"33","author":"Gonz\u00e1lez","year":"2015","journal-title":"New Gener. Comput."},{"issue":"3","key":"10.1016\/j.asoc.2019.105773_b11","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/MCI.2016.2572540","article-title":"Statistical learning theory and ELM for big social data analysis","volume":"11","author":"Oneto","year":"2016","journal-title":"IEEE Comput. Intell. Mag."},{"key":"10.1016\/j.asoc.2019.105773_b12","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/j.neucom.2016.09.117","article-title":"Ensemble application of convolutional neural networks and multiple kernel learning for multimodal sentiment analysis","volume":"261","author":"Poria","year":"2017","journal-title":"Neurocomputing"},{"year":"2009","series-title":"Metaheuristics: from Design to Implementation, Vol. 74","author":"Talbi","key":"10.1016\/j.asoc.2019.105773_b13"},{"key":"10.1016\/j.asoc.2019.105773_b14","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.knosys.2018.06.001","article-title":"Emperor penguin optimizer: A bio-inspired algorithm for engineering problems","volume":"159","author":"Dhiman","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.asoc.2019.105773_b15","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1016\/j.swevo.2019.04.010","article-title":"Analysis of high-dimensional biomedical data using an evolutionary multi-objective emperor penguin optimizer","volume":"48","author":"Baliarsingh","year":"2019","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.asoc.2019.105773_b16","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.engappai.2018.04.009","article-title":"The social engineering optimizer (SEO)","volume":"72","author":"Fathollahi-Fard","year":"2018","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.asoc.2019.105773_b17","first-page":"1","article-title":"Ensemble classification for imbalanced data based on feature space partitioning and hybrid metaheuristics","author":"Lopez-Garcia","year":"2019","journal-title":"Appl. Intell."},{"key":"10.1016\/j.asoc.2019.105773_b18","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.chemolab.2018.12.003","article-title":"A new hybrid firefly algorithm and particle swarm optimization for tuning parameter estimation in penalized support vector machine with application in chemometrics","volume":"184","author":"Al-Thanoon","year":"2019","journal-title":"Chemometr. Intell. Lab. Syst."},{"issue":"4","key":"10.1016\/j.asoc.2019.105773_b19","doi-asserted-by":"crossref","first-page":"3473","DOI":"10.1007\/s13369-018-3536-0","article-title":"Hybrid Nelder\u2013Mead algorithm and dragonfly algorithm for function optimization and the training of a multilayer perceptron","volume":"44","author":"Xu","year":"2019","journal-title":"Arab. J. Sci. Eng."},{"key":"10.1016\/j.asoc.2019.105773_b20","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.neucom.2017.04.053","article-title":"Hybrid Whale Optimization Algorithm with simulated annealing for feature selection","volume":"260","author":"Mafarja","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2019.105773_b21","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.patcog.2016.04.003","article-title":"Memetic extreme learning machine","volume":"58","author":"Zhang","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.asoc.2019.105773_b22","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.ijepes.2016.03.007","article-title":"Hybrid Tabu search-simulated annealing method to solve optimal reactive power problem","volume":"82","author":"Lenin","year":"2016","journal-title":"Int. J. Electr. Power Energy Syst."},{"key":"10.1016\/j.asoc.2019.105773_b23","doi-asserted-by":"crossref","first-page":"937","DOI":"10.1016\/j.asoc.2016.08.036","article-title":"Developing a dynamic neighborhood structure for an adaptive hybrid simulated annealing\u2013tabu search algorithm to solve the symmetrical traveling salesman problem","volume":"49","author":"Lin","year":"2016","journal-title":"Appl. Soft Comput."},{"issue":"1","key":"10.1016\/j.asoc.2019.105773_b24","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1002\/atr.1274","article-title":"Hybrid simulated annealing and genetic algorithm for optimizing arterial signal timings under oversaturated traffic conditions","volume":"49","author":"Li","year":"2015","journal-title":"J. Adv. Transp."},{"key":"10.1016\/j.asoc.2019.105773_b25","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1016\/j.enbuild.2014.10.039","article-title":"Hybrid single objective genetic algorithm coupled with the simulated annealing optimization method for building optimization","volume":"86","author":"Junghans","year":"2015","journal-title":"Energy Build."},{"key":"10.1016\/j.asoc.2019.105773_b26","series-title":"2008 IEEE\/ACS International Conference on Computer Systems and Applications","first-page":"45","article-title":"Comparison of population based metaheuristics for feature selection: Application to microarray data classification","author":"Talbi","year":"2008"},{"key":"10.1016\/j.asoc.2019.105773_b27","series-title":"Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence","first-page":"266","article-title":"Generalized Fisher score for feature selection","author":"Gu","year":"2011"},{"issue":"1","key":"10.1016\/j.asoc.2019.105773_b28","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1007\/s00180-016-0665-3","article-title":"Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis","volume":"32","author":"Yang","year":"2017","journal-title":"Comput. Stat."},{"issue":"2","key":"10.1016\/j.asoc.2019.105773_b29","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.ygeno.2017.01.004","article-title":"Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts","volume":"109","author":"Dashtban","year":"2017","journal-title":"Genomics"},{"key":"10.1016\/j.asoc.2019.105773_b30","series-title":"Intelligent Engineering Informatics","first-page":"169","article-title":"Gender prediction in author profiling using relieff feature selection algorithm","author":"Reddy","year":"2018"},{"issue":"1","key":"10.1016\/j.asoc.2019.105773_b31","first-page":"3133","article-title":"Do we need hundreds of classifiers to solve real world classification problems?","volume":"15","author":"Fern\u00e1ndez-Delgado","year":"2014","journal-title":"J. Mach. Learn. Res."},{"issue":"5439","key":"10.1016\/j.asoc.2019.105773_b32","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1126\/science.286.5439.531","article-title":"Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring","volume":"286","author":"Golub","year":"1999","journal-title":"Science"},{"issue":"11","key":"10.1016\/j.asoc.2019.105773_b33","doi-asserted-by":"crossref","first-page":"3236","DOI":"10.1016\/j.patcog.2007.02.007","article-title":"Markov blanket-embedded genetic algorithm for gene selection","volume":"40","author":"Zhu","year":"2007","journal-title":"Pattern Recognit."},{"issue":"12","key":"10.1016\/j.asoc.2019.105773_b34","doi-asserted-by":"crossref","first-page":"6745","DOI":"10.1073\/pnas.96.12.6745","article-title":"Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays","volume":"96","author":"Alon","year":"1999","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"9306","key":"10.1016\/j.asoc.2019.105773_b35","doi-asserted-by":"crossref","first-page":"572","DOI":"10.1016\/S0140-6736(02)07746-2","article-title":"Use of proteomic patterns in serum to identify ovarian cancer","volume":"359","author":"Petricoin III","year":"2002","journal-title":"Lancet"},{"issue":"24","key":"10.1016\/j.asoc.2019.105773_b36","doi-asserted-by":"crossref","first-page":"13790","DOI":"10.1073\/pnas.191502998","article-title":"Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses","volume":"98","author":"Bhattacharjee","year":"2001","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"6","key":"10.1016\/j.asoc.2019.105773_b37","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1007\/s00521-007-0110-1","article-title":"Classification consistency analysis for bootstrapping gene selection","volume":"16","author":"Pang","year":"2007","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.asoc.2019.105773_b38","doi-asserted-by":"crossref","first-page":"922","DOI":"10.1016\/j.asoc.2015.10.037","article-title":"Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments","volume":"38","author":"Apolloni","year":"2016","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2019.105773_b39","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.asoc.2015.01.035","article-title":"Distributed feature selection: An application to microarray data classification","volume":"30","author":"Bol\u00f3n-Canedo","year":"2015","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2019.105773_b40","series-title":"European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics","first-page":"90","article-title":"A genetic embedded approach for gene selection and classification of microarray data","author":"Hernandez","year":"2007"},{"key":"10.1016\/j.asoc.2019.105773_b41","series-title":"Bioinformatics and Biomedicine (BIBM), 2014 IEEE International Conference on","first-page":"74","article-title":"Incremental wrapper based gene selection with Markov blanket","author":"Wang","year":"2014"},{"key":"10.1016\/j.asoc.2019.105773_b42","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/j.apm.2019.01.044","article-title":"Informative gene selection for microarray classification via adaptive elastic net with conditional mutual information","volume":"71","author":"Wang","year":"2019","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.asoc.2019.105773_b43","first-page":"1","article-title":"A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification","author":"Algamal","year":"2018","journal-title":"Adv. Data Anal. Classif."},{"key":"10.1016\/j.asoc.2019.105773_b44","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1016\/j.imu.2017.10.004","article-title":"A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata","volume":"9","author":"Motieghader","year":"2017","journal-title":"Inf. Med. Unlocked"},{"key":"10.1016\/j.asoc.2019.105773_b45","doi-asserted-by":"crossref","first-page":"604910","DOI":"10.1155\/2015\/604910","article-title":"MRMR-ABC: A hybrid gene selection algorithm for cancer classification using microarray gene expression profiling","volume":"2015","author":"Alshamlan","year":"2015","journal-title":"Biomed. Res. Int."},{"key":"10.1016\/j.asoc.2019.105773_b46","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.compbiolchem.2015.03.001","article-title":"Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification","volume":"56","author":"Alshamlan","year":"2015","journal-title":"Comput. Biol. Chem."},{"key":"10.1016\/j.asoc.2019.105773_b47","series-title":"Innovations in Bio-Inspired Computing and Applications","first-page":"229","article-title":"Hybrid feature selection using correlation coefficient and particle swarm optimization on microarray gene expression data","author":"Chinnaswamy","year":"2016"},{"issue":"1","key":"10.1016\/j.asoc.2019.105773_b48","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1016\/j.eswa.2014.08.014","article-title":"Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique","volume":"42","author":"Kar","year":"2015","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2019.105773_b49","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.swevo.2016.02.002","article-title":"Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system","volume":"28","author":"Mohapatra","year":"2016","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.asoc.2019.105773_b50","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.ins.2016.02.028","article-title":"A Hierarchical Ensemble of ECOC for cancer classification based on multi-class microarray data","volume":"349","author":"Liu","year":"2016","journal-title":"Inform. Sci."},{"key":"10.1016\/j.asoc.2019.105773_b51","doi-asserted-by":"crossref","first-page":"1024","DOI":"10.1016\/j.neucom.2015.05.022","article-title":"Gene selection for microarray data classification using a novel ant colony optimization","volume":"168","author":"Tabakhi","year":"2015","journal-title":"Neurocomputing"}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S156849461930554X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S156849461930554X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,12,14]],"date-time":"2019-12-14T07:29:21Z","timestamp":1576308561000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S156849461930554X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":51,"alternative-id":["S156849461930554X"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2019.105773","relation":{},"ISSN":["1568-4946"],"issn-type":[{"type":"print","value":"1568-4946"}],"subject":[],"published":{"date-parts":[[2019,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A memetic algorithm using emperor penguin and social engineering optimization for medical data classification","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2019.105773","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105773"}}