{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T11:54:13Z","timestamp":1724414053343},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["21878081"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["222201917006"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1016\/j.asoc.2019.105527","type":"journal-article","created":{"date-parts":[[2019,5,29]],"date-time":"2019-05-29T11:34:20Z","timestamp":1559129660000},"page":"105527","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":27,"special_numbering":"C","title":["A probabilistic principal component analysis-based approach in process monitoring and fault diagnosis with application in wastewater treatment plant"],"prefix":"10.1016","volume":"82","author":[{"given":"Bei","family":"Wang","sequence":"first","affiliation":[]},{"given":"Zhichao","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhenwen","family":"Dai","sequence":"additional","affiliation":[]},{"given":"Neil","family":"Lawrence","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5622-8686","authenticated-orcid":false,"given":"Xuefeng","family":"Yan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"10","key":"10.1016\/j.asoc.2019.105527_b1","doi-asserted-by":"crossref","first-page":"3543","DOI":"10.1021\/ie302069q","article-title":"Review of recent research on data-based process monitoring","volume":"52","author":"Ge","year":"2013","journal-title":"Ind. Eng. Chem. Res."},{"issue":"1","key":"10.1016\/j.asoc.2019.105527_b2","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1109\/TIE.2014.2308133","article-title":"Data-based techniques focused on modern industry: An overview","volume":"62","author":"Yin","year":"2015","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"4","key":"10.1016\/j.asoc.2019.105527_b3","first-page":"2578","article-title":"Fault isolation based on k-nearest neighbor rule for industrial processes","volume":"63","author":"Zhou","year":"2016","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"9","key":"10.1016\/j.asoc.2019.105527_b4","doi-asserted-by":"crossref","first-page":"2812","DOI":"10.1039\/C3AY41907J","article-title":"Principal component analysis","volume":"6","author":"Bro","year":"2014","journal-title":"Anal. Methods"},{"issue":"1","key":"10.1016\/j.asoc.2019.105527_b5","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1109\/TIE.2015.2466557","article-title":"Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference (in English)","volume":"63","author":"Jiang","year":"2016","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"11","key":"10.1016\/j.asoc.2019.105527_b6","doi-asserted-by":"crossref","first-page":"6438","DOI":"10.1109\/TIE.2014.2301761","article-title":"A new method of dynamic latent-variable modeling for process monitoring","volume":"61","author":"Li","year":"2014","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"2","key":"10.1016\/j.asoc.2019.105527_b7","doi-asserted-by":"crossref","first-page":"894","DOI":"10.1109\/TASE.2016.2545744","article-title":"Translation-invariant multiscale energy-based PCA for monitoring batch processes in semiconductor manufacturing","volume":"14","author":"Rato","year":"2017","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"issue":"3","key":"10.1016\/j.asoc.2019.105527_b8","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1002\/cem.2687","article-title":"Generalized Dice\u2019s coefficient-based multi-block principal component analysis with Bayesian inference for plant-wide process monitoring","volume":"29","author":"Wang","year":"2015","journal-title":"J. Chem."},{"key":"10.1016\/j.asoc.2019.105527_b9","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.conengprac.2018.07.012","article-title":"Parallel PCA\u2013KPCA for nonlinear process monitoring","volume":"80","author":"Jiang","year":"2018","journal-title":"Control Eng. Pract."},{"issue":"3","key":"10.1016\/j.asoc.2019.105527_b10","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1111\/1467-9868.00196","article-title":"Probabilistic principal component analysis","volume":"61","author":"Tipping","year":"1999","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"issue":"10","key":"10.1016\/j.asoc.2019.105527_b11","doi-asserted-by":"crossref","first-page":"4792","DOI":"10.1021\/ie9019402","article-title":"Nonlinear probabilistic monitoring based on the Gaussian process latent variable model","volume":"49","author":"Ge","year":"2010","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.asoc.2019.105527_b12","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","year":"2006"},{"issue":"2","key":"10.1016\/j.asoc.2019.105527_b13","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/S0169-7439(03)00063-7","article-title":"Process monitoring based on probabilistic PCA","volume":"67","author":"Kim","year":"2003","journal-title":"Chem. Intell. Lab. Syst."},{"issue":"11","key":"10.1016\/j.asoc.2019.105527_b14","doi-asserted-by":"crossref","first-page":"2838","DOI":"10.1002\/aic.12200","article-title":"Mixture Bayesian regularization method of PPCA for multimode process monitoring","volume":"56","author":"Ge","year":"2010","journal-title":"AIChE J."},{"issue":"6","key":"10.1016\/j.asoc.2019.105527_b15","first-page":"3814","article-title":"HMM-driven robust probabilistic principal component analyzer for dynamic process fault classification","volume":"62","author":"Zhu","year":"2015","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"6","key":"10.1016\/j.asoc.2019.105527_b16","doi-asserted-by":"crossref","DOI":"10.1002\/cem.2890","article-title":"Process monitoring based on entropy weight for a subspace containing probabilistic principal components and fault-relevant noise factors","volume":"31","author":"Zhu","year":"2017","journal-title":"J. Chem."},{"key":"10.1016\/j.asoc.2019.105527_b17","series-title":"Advances in Neural Information Processing Systems","first-page":"329","article-title":"Gaussian process latent variable models for visualisation of high dimensional data","author":"Lawrence","year":"2004"},{"issue":"Nov","key":"10.1016\/j.asoc.2019.105527_b18","first-page":"1783","article-title":"Probabilistic non-linear principal component analysis with Gaussian process latent variable models","volume":"6","author":"Lawrence","year":"2005","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.asoc.2019.105527_b19","unstructured":"Z. Dai, A. Damianou, J. Hensman, N. Lawrence, Gaussian process models with parallelization and GPU acceleration, arXiv preprint arXiv:1410.4984, 2014."},{"key":"10.1016\/j.asoc.2019.105527_b20","series-title":"Gaussian Processes for Machine Learning. 2006, Vol. 38","first-page":"715","author":"Rasmussen","year":"2006"},{"key":"10.1016\/j.asoc.2019.105527_b21","series-title":"Computational Intelligence and Data Mining, 2007. CIDM 2007. IEEE Symposium on","first-page":"287","article-title":"Gaussian process latent variable models for fault detection","author":"Eciolaza","year":"2007"},{"issue":"10","key":"10.1016\/j.asoc.2019.105527_b22","doi-asserted-by":"crossref","first-page":"1786","DOI":"10.1109\/TBME.2007.894981","article-title":"A computational model for C. elegans locomotory behavior: application to multiworm tracking","volume":"54","author":"Nicolas","year":"2007","journal-title":"IEEE Trans. Bio-Med. Eng."},{"issue":"2","key":"10.1016\/j.asoc.2019.105527_b23","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.knosys.2009.11.015","article-title":"New results in modelling derived from Bayesian filtering","volume":"23","author":"Pozna","year":"2010","journal-title":"Knowl.-Based Syst."},{"issue":"12","key":"10.1016\/j.asoc.2019.105527_b24","doi-asserted-by":"crossref","first-page":"1333","DOI":"10.1109\/TNSRE.2015.2501979","article-title":"Bayesian filtering of surface EMG for accurate simultaneous and proportional prosthetic control","volume":"24","author":"Hofmann","year":"2015","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng. A Publ. IEEE Eng. Med. Biol. Soc."},{"issue":"42","key":"10.1016\/j.asoc.2019.105527_b25","first-page":"1","article-title":"X=, (in English)","volume":"17","author":"Damianou","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.asoc.2019.105527_b26","series-title":"Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics","first-page":"844","article-title":"Bayesian Gaussian process latent variable model","author":"Titsias","year":"2010"},{"issue":"8","key":"10.1016\/j.asoc.2019.105527_b27","doi-asserted-by":"crossref","first-page":"1024","DOI":"10.1177\/0142331213480213","article-title":"Process monitoring based on improved recursive PCA methods by adaptive extracting principal components","volume":"35","author":"Xia","year":"2013","journal-title":"Trans. Inst. Meas. Control"},{"key":"10.1016\/j.asoc.2019.105527_b28","series-title":"Fault Detection and Diagnosis in Industrial Systems","author":"Chiang","year":"2000"},{"key":"10.1016\/j.asoc.2019.105527_b29","series-title":"Multivariate Density Estimation: Theory, Practice, and Visualization","author":"Scott","year":"2015"},{"key":"10.1016\/j.asoc.2019.105527_b30","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/j.chemolab.2013.07.001","article-title":"Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis","volume":"127","author":"Deng","year":"2013","journal-title":"Chem. Intell. Lab. Syst."},{"key":"10.1016\/j.asoc.2019.105527_b31","series-title":"Deep Gaussian Processes and Variational Propagation of Uncertainty","author":"Damianou","year":"2015"}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494619302972?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494619302972?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,26]],"date-time":"2020-11-26T16:54:57Z","timestamp":1606409697000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494619302972"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9]]},"references-count":31,"alternative-id":["S1568494619302972"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2019.105527","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2019,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A probabilistic principal component analysis-based approach in process monitoring and fault diagnosis with application in wastewater treatment plant","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2019.105527","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105527"}}