{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,13]],"date-time":"2024-07-13T09:06:44Z","timestamp":1720861604242},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001823","name":"Ministerstvo \u0160kolstv\u00ed, Ml\u00e1de\u017ee a T\u011blov\u00fdchovy","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001823","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2019,4]]},"DOI":"10.1016\/j.asoc.2019.01.020","type":"journal-article","created":{"date-parts":[[2019,2,1]],"date-time":"2019-02-01T03:46:17Z","timestamp":1548992777000},"page":"316-328","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["A genetic programming-based regression for extrapolating a blood glucose-dynamics model from interstitial glucose measurements and their first derivatives"],"prefix":"10.1016","volume":"77","author":[{"given":"I.","family":"De Falco","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4092-6102","authenticated-orcid":false,"given":"A. Della","family":"Cioppa","sequence":"additional","affiliation":[]},{"given":"A.","family":"Giugliano","sequence":"additional","affiliation":[]},{"given":"A.","family":"Marcelli","sequence":"additional","affiliation":[]},{"given":"T.","family":"Koutny","sequence":"additional","affiliation":[]},{"given":"M.","family":"Krcma","sequence":"additional","affiliation":[]},{"given":"U.","family":"Scafuri","sequence":"additional","affiliation":[]},{"given":"E.","family":"Tarantino","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2019.01.020_b1","unstructured":"World Health Organization, Diabetes fact sheet n. 312 (October 2013)."},{"issue":"4","key":"10.1016\/j.asoc.2019.01.020_b2","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.diabet.2017.04.004","article-title":"Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes","volume":"43","author":"Bonnet","year":"2017","journal-title":"Diabetes Metabolism"},{"key":"10.1016\/j.asoc.2019.01.020_b3","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.diabres.2017.12.019","article-title":"Diabetes and complications of the heart in Sub\u2013Saharan Africa: an urgent need for improved awareness, diagnostics and management","volume":"137","author":"Glezeva","year":"2018","journal-title":"Diabetes Res. Clin. Pract."},{"key":"10.1016\/j.asoc.2019.01.020_b4","unstructured":"World Health Organization, Global report on diabetes, 2016."},{"issue":"4","key":"10.1016\/j.asoc.2019.01.020_b5","doi-asserted-by":"crossref","first-page":"385","DOI":"10.3390\/diagnostics3040385","article-title":"Continuous glucose monitoring systems: a review","volume":"3","author":"Vashist","year":"2013","journal-title":"Diagnostics"},{"key":"10.1016\/j.asoc.2019.01.020_b6","doi-asserted-by":"crossref","first-page":"1160","DOI":"10.2337\/dc07-2401","article-title":"Comparison of the numerical and clinical accuracy of four continuous glucose monitors","volume":"31","author":"Kovatchev","year":"2008","journal-title":"Diabetes Care"},{"key":"10.1016\/j.asoc.2019.01.020_b7","doi-asserted-by":"crossref","first-page":"251","DOI":"10.2337\/dc12-0070","article-title":"A comparative effectiveness analysis of three continuous glucose monitors","volume":"36","author":"Damiano","year":"2013","journal-title":"Diabetes Care"},{"issue":"8","key":"10.1016\/j.asoc.2019.01.020_b8","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1089\/dia.2017.0087","article-title":"Accuracy of a fourth-generation subcutaneous continuous glucose sensor","volume":"19","author":"Christiansen","year":"2017","journal-title":"Diabetes Technol. Ther."},{"issue":"6","key":"10.1016\/j.asoc.2019.01.020_b9","doi-asserted-by":"crossref","first-page":"1070","DOI":"10.1177\/1932296817734367","article-title":"A personalized week-to-week updating algorithm to improve continuous glucose monitoring performance","volume":"11","author":"Zavitsanou","year":"2017","journal-title":"J. Diabetes Sci. Technol."},{"key":"10.1016\/j.asoc.2019.01.020_b10","doi-asserted-by":"crossref","first-page":"350","DOI":"10.4093\/kdj.2010.34.6.350","article-title":"The correlation and accuracy of glucose levels between interstitial fluid and venous plasma by continuous glucose monitoring system","volume":"34","author":"Baek","year":"2010","journal-title":"Korean Diabetes J."},{"key":"10.1016\/j.asoc.2019.01.020_b11","doi-asserted-by":"crossref","first-page":"10936","DOI":"10.3390\/s101210936","article-title":"Estimating plasma glucose from interstitial glucose: the issue of calibration algorithms in commercial continuous glucose monitoring devices","volume":"10","author":"Rossetti","year":"2010","journal-title":"Sensors"},{"issue":"4","key":"10.1016\/j.asoc.2019.01.020_b12","doi-asserted-by":"crossref","first-page":"538","DOI":"10.2337\/dc16-2482","article-title":"REPLACE-BG: A randomized trial comparing continuous glucose monitoring with and without routine blood glucose monitoring in adults with well-controlled type 1 diabetes","volume":"40","author":"Aleppo","year":"2017","journal-title":"Diabetes Care"},{"issue":"9","key":"10.1016\/j.asoc.2019.01.020_b13","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1007\/s10916-017-0788-2","article-title":"Data based prediction of blood glucose concentrations using evolutionary methods","volume":"41","author":"Hidalgo","year":"2017","journal-title":"J. Med. Syst."},{"key":"10.1016\/j.asoc.2019.01.020_b14","series-title":"Proceedings of the 11th International Conference on Health Informatics, HEALTHINF 2018 - Part of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2018, Vol. 5","first-page":"625","article-title":"An evolutionary approach for estimating the blood glucose by exploiting interstitial glucose measurements","author":"De\u00a0Falco","year":"2018"},{"key":"10.1016\/j.asoc.2019.01.020_b15","series-title":"Proceedings of the IEEE Symposium on Computers and Communications (ISCC)","first-page":"1158","article-title":"An evolutionary methodology for estimating blood glucose levels from interstitial glucose measurements and their derivatives","author":"De Falco","year":"2018"},{"key":"10.1016\/j.asoc.2019.01.020_b16","series-title":"Adaptive and Natural Computing Algorithms - Lecture Notes in Computer Science, Vol. 5495","first-page":"233","article-title":"Multiobjective genetic programming for nonlinear system identification","author":"Ferariu","year":"2009"},{"key":"10.1016\/j.asoc.2019.01.020_b17","series-title":"Proceedings of the IEEE Congress on Evolutionary Computation","first-page":"1","article-title":"Genetic network programming with estimation of distribution algorithms for class association rule mining in traffic prediction","author":"Li","year":"2010"},{"key":"10.1016\/j.asoc.2019.01.020_b18","series-title":"Proceedings of the 3rd International Conference on Power Generation Systems and Renewable Energy Technologies","first-page":"148","article-title":"Numerical investigation of nonlinear power-law fin type problem using hybrid heuristic computation","author":"Malik","year":"2017"},{"issue":"2","key":"10.1016\/j.asoc.2019.01.020_b19","first-page":"1","article-title":"A hybrid clustering method based on improved artificial bee colony and fuzzy c-means algorithm","volume":"15","author":"Kumar","year":"2017","journal-title":"Int. J. Artif. Intell."},{"issue":"1","key":"10.1016\/j.asoc.2019.01.020_b20","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0191103","article-title":"Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations","volume":"13","author":"Ullah","year":"2018","journal-title":"PLoS One"},{"key":"10.1016\/j.asoc.2019.01.020_b21","series-title":"Genetic Programming: On the Programming of Computers by means of Natural Selection, Vol. 1","author":"Koza","year":"1992"},{"issue":"1","key":"10.1016\/j.asoc.2019.01.020_b22","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.physa.2006.04.025","article-title":"Performance of genetic programming to extract the trend in noisy data series","volume":"370","author":"Borrelli","year":"2006","journal-title":"Physica A"},{"key":"10.1016\/j.asoc.2019.01.020_b23","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1016\/j.apnum.2005.04.023","article-title":"Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview","volume":"56","author":"Makroglou","year":"2006","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.asoc.2019.01.020_b24","first-page":"68","article-title":"Mathematical modeling of the glucose\u2013insulin system: A review","volume":"44","author":"Palumbo","year":"2013","journal-title":"Math. Biosci."},{"key":"10.1016\/j.asoc.2019.01.020_b25","series-title":"Lecture Notes in Computer Science, Vol. 10433","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1007\/978-3-319-64265-9_6","article-title":"A review of model prediction in diabetes and of designing glucose regulators based on model predictive control for the artificial pancreas","author":"Saiti","year":"2017"},{"key":"10.1016\/j.asoc.2019.01.020_b26","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1088\/0967-3334\/25\/4\/010","article-title":"Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes","volume":"25","author":"Hovorka","year":"2004","journal-title":"Physiol. Meas."},{"issue":"8","key":"10.1016\/j.asoc.2019.01.020_b27","doi-asserted-by":"crossref","first-page":"1478","DOI":"10.1109\/TBME.2006.878075","article-title":"Model-based blood glucose control for type 1 diabetes via parametric programming","volume":"53","author":"Dua","year":"2006","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.asoc.2019.01.020_b28","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1089\/dia.2006.0039","article-title":"The impact of non-model-related variability on blood glucose prediction","volume":"9","author":"Kildegaard","year":"2007","journal-title":"Diabetes Technol. Ther."},{"key":"10.1016\/j.asoc.2019.01.020_b29","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.compbiomed.2013.12.014","article-title":"A differential evolution based approach for estimating minimal model parameters from IVGTT data","volume":"46","author":"Ghosh","year":"2015","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.asoc.2019.01.020_b30","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1177\/1932296813514502","article-title":"The UVA\/PADOVA type 1 diabetes simulator: new features","volume":"8","author":"Man","year":"2014","journal-title":"J. Diabetes Sci. Technol."},{"key":"10.1016\/j.asoc.2019.01.020_b31","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.asoc.2013.11.006","article-title":"Modeling glycemia in humans by means of grammatical evolution","volume":"20","author":"Hidalgo","year":"2014","journal-title":"Appl. Soft Comput."},{"issue":"11","key":"10.1016\/j.asoc.2019.01.020_b32","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0187754","article-title":"Personalized blood glucose prediction: a hybrid approach using grammatical evolution and physiological models","volume":"12","author":"Contreras","year":"2017","journal-title":"PLoS One"},{"key":"10.1016\/j.asoc.2019.01.020_b33","series-title":"Proceedings of the Genetic and Evolutionary Computation Conference Companion","first-page":"1387","article-title":"Forecasting glucose levels in patients with diabetes mellitus using semantic grammatical evolution and symbolic aggregate approximation","author":"Velasco","year":"2017"},{"key":"10.1016\/j.asoc.2019.01.020_b34","series-title":"Proceedings of the IEEE Congress on Evolutionary Computation","first-page":"2193","article-title":"Data augmentation and evolutionary algorithms to improve the prediction of blood glucose levels in scarcity of training data","author":"Velasco","year":"2017"},{"key":"10.1016\/j.asoc.2019.01.020_b35","series-title":"Applications of Evolutionary Computation, Part I - Lecture Notes In Computer Science, Vol. 10199","first-page":"142","article-title":"Enhancing grammatical evolution through data augmentation: application to blood glucose forecasting","author":"Velasco","year":"2017"},{"issue":"3","key":"10.1016\/j.asoc.2019.01.020_b36","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1007\/s12293-018-0265-6","article-title":"Combining data augmentation, EDAs and grammatical evolution for blood glucose forecasting","volume":"10","author":"Velasco","year":"2018","journal-title":"Memetic Comput."},{"key":"10.1016\/j.asoc.2019.01.020_b37","doi-asserted-by":"crossref","DOI":"10.1108\/JSIT-10-2017-0103","article-title":"Swarm hybrid optimization for a piecewise model fitting applied to a glucose model","author":"Acedo","year":"2018","journal-title":"J. Syst. Inf. Technol."},{"key":"10.1016\/j.asoc.2019.01.020_b38","doi-asserted-by":"crossref","first-page":"7354","DOI":"10.1016\/j.eswa.2013.07.035","article-title":"Using causality modeling and fuzzy lattice reasoning algorithm for predicting blood glucose","volume":"40","author":"Fong","year":"2013","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2019.01.020_b39","doi-asserted-by":"crossref","first-page":"792","DOI":"10.1089\/dia.2013.0104","article-title":"A novel adaptive-weighted-average framework for blood glucose prediction","volume":"15","author":"Wang","year":"2013","journal-title":"Diabetes Technol. Ther."},{"key":"10.1016\/j.asoc.2019.01.020_b40","doi-asserted-by":"crossref","first-page":"1333","DOI":"10.1007\/s11517-015-1320-9","article-title":"Comparative assessment of glucose prediciotn models for patient with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring","volume":"53","author":"Zarkogiovanni","year":"2015","journal-title":"Med. Biol. Eng. Comput."},{"key":"10.1016\/j.asoc.2019.01.020_b41","first-page":"E561","article-title":"Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring","volume":"277","author":"Rebrin","year":"1999","journal-title":"Amer. J. Physiol."},{"key":"10.1016\/j.asoc.2019.01.020_b42","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1177\/193229680700100504","article-title":"Sensors & algorithms for continuous glucose monitoring reconstruction of glucose in plasma from interstitial fluid continuous glucose monitoring data role of sensor calibration","volume":"1","author":"Facchinetti","year":"2007","journal-title":"J. Diabetes Sci. Technol."},{"issue":"2","key":"10.1016\/j.asoc.2019.01.020_b43","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1177\/193229681000400221","article-title":"Real-time glucose estimation algorithm for continuous glucose monitoring using autoregressive models","volume":"4","author":"Leal","year":"2010","journal-title":"J. Diabetes Sci. Technol."},{"key":"10.1016\/j.asoc.2019.01.020_b44","doi-asserted-by":"crossref","first-page":"622","DOI":"10.2337\/diacare.10.5.622","article-title":"Evaluating clinical accuracy of systems for self-monitoring of blood glucose","volume":"10","author":"Clarke","year":"1987","journal-title":"Diabetes Care"},{"issue":"1","key":"10.1016\/j.asoc.2019.01.020_b45","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1089\/dia.2009.0076","article-title":"Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring","volume":"12","author":"P\u00e9rez-Gand\u00eda","year":"2010","journal-title":"Diabetes Technol. Ther."},{"issue":"8","key":"10.1016\/j.asoc.2019.01.020_b46","doi-asserted-by":"crossref","first-page":"1839","DOI":"10.1109\/TBME.2010.2047504","article-title":"The importance of different frequency bands in predicting subcutaneous glucose concentration in type 1 diabetic patients","volume":"57","author":"Lu","year":"2010","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"6","key":"10.1016\/j.asoc.2019.01.020_b47","doi-asserted-by":"crossref","first-page":"1034","DOI":"10.1016\/j.mehy.2011.08.042","article-title":"Estimating reaction delay for glucose level prediction","volume":"77","author":"Koutny","year":"2011","journal-title":"Med. Hypotheses"},{"key":"10.1016\/j.asoc.2019.01.020_b48","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1109\/TITB.2011.2177469","article-title":"Prediction of interstitial glucose level","volume":"16","author":"Koutny","year":"2012","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"key":"10.1016\/j.asoc.2019.01.020_b49","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.compbiomed.2014.07.017","article-title":"Blood glucose level reconstruction as a function of transcapillary glucose transport","volume":"53","author":"Koutny","year":"2014","journal-title":"Comput. Biol. Med."},{"issue":"1","key":"10.1016\/j.asoc.2019.01.020_b50","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.cmpb.2013.09.016","article-title":"Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information","volume":"113","author":"Zecchin","year":"2014","journal-title":"Comput. Methods Prog. Biol."},{"key":"10.1016\/j.asoc.2019.01.020_b51","series-title":"Proceedings of the Genetic and Evolutionary Computation Conference Companion","first-page":"1393","article-title":"Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring","author":"Colmenar","year":"2016"},{"issue":"2","key":"10.1016\/j.asoc.2019.01.020_b52","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1177\/1932296817710475","article-title":"Artificial intelligence methodologies and their application to diabetes","volume":"12","author":"Rigla","year":"2018","journal-title":"J. Diabetes Sci. Technol."},{"key":"10.1016\/j.asoc.2019.01.020_b53","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.cmpb.2016.05.011","article-title":"Using meta-differential evolution to enhance a calculation of a continuous blood glucose level","volume":"133","author":"Koutny","year":"2016","journal-title":"Comput. Methods Prog. Biol."},{"issue":"4","key":"10.1016\/j.asoc.2019.01.020_b54","first-page":"18","article-title":"Differential evolution","volume":"22","author":"Price","year":"1997","journal-title":"Dr. Dobb\u2019s J."},{"key":"10.1016\/j.asoc.2019.01.020_b55","series-title":"Proceedings of the International Symposium on Computers and Communications","first-page":"284","article-title":"Accurate estimate of blood glucose through interstitial glucose by genetic programming","author":"De\u00a0Falco","year":"2017"},{"key":"10.1016\/j.asoc.2019.01.020_b56","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.procs.2016.09.037","article-title":"On-line blood glucose level calculation","volume":"98","author":"Koutny","year":"2016","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.asoc.2019.01.020_b57","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jnca.2018.06.007","article-title":"Genetic programming-based induction of a glucose-dynamics model for telemedicine","volume":"119","author":"De Falco","year":"2018","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.asoc.2019.01.020_b58","series-title":"Numerical Recipes: The Art of Scientific Computing","author":"Press","year":"2007"},{"key":"10.1016\/j.asoc.2019.01.020_b59","unstructured":"Type-1 database with artificially calculated blood glucose levels, 2018. URL https:\/\/diabetes.zcu.cz\/smartcgms."},{"key":"10.1016\/j.asoc.2019.01.020_b60","unstructured":"D. Searson, GPTIPS: Genetic programming and symbolic regression for MATLAB. 2009. URL http:\/\/gptips.sourceforge.net."},{"issue":"1","key":"10.1016\/j.asoc.2019.01.020_b61","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1007\/s00521-011-0734-z","article-title":"A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems","volume":"21","author":"Gandomi","year":"2012","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.asoc.2019.01.020_b62","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.procs.2018.10.197","article-title":"Parallel software architecture for the next generation of glucose monitoring","volume":"141","author":"Koutny","year":"2018","journal-title":"Procedia Comput. Sci."}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494619300249?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494619300249?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,14]],"date-time":"2022-07-14T05:36:27Z","timestamp":1657776987000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494619300249"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4]]},"references-count":62,"alternative-id":["S1568494619300249"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2019.01.020","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2019,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A genetic programming-based regression for extrapolating a blood glucose-dynamics model from interstitial glucose measurements and their first derivatives","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2019.01.020","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}