{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T15:19:13Z","timestamp":1722871153743},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.asoc.2017.04.053","type":"journal-article","created":{"date-parts":[[2017,5,2]],"date-time":"2017-05-02T12:32:09Z","timestamp":1493728329000},"page":"527-539","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":24,"special_numbering":"C","title":["A hybrid system for forecasting 24-h power load profile for Polish electric grid"],"prefix":"10.1016","volume":"58","author":[{"given":"Stanis\u0142aw","family":"Brodowski","sequence":"first","affiliation":[]},{"given":"Andrzej","family":"Bielecki","sequence":"additional","affiliation":[]},{"given":"Maciej","family":"Filocha","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2017.04.053_bib0005","unstructured":"H. Majchrzak, A. Mrozi\u0144ski, R. Pozniak, Wp\u0142yw funkcjonowania rynku bilansujcego na koszty ponoszone przez uczestnikw rynku energii elektrycznej (in Polish), Energetyka, 2005."},{"key":"10.1016\/j.asoc.2017.04.053_bib0010","series-title":"Trends in Neural Computation, Vol. 35 of Studies in Computational Intelligence","first-page":"391","article-title":"Short term electric load forecasting: a tutorial","author":"Kyriakides","year":"2007"},{"key":"10.1016\/j.asoc.2017.04.053_bib0015","series-title":"Raport o rynku energii elektrycznej i gazu ziemnego w polsce w 2014 roku","author":"Musia\u0142kiewicz","year":"2015"},{"issue":"3","key":"10.1016\/j.asoc.2017.04.053_bib0020","doi-asserted-by":"crossref","first-page":"902","DOI":"10.1016\/j.ejor.2009.01.062","article-title":"Electric load forecasting methods: tools for decision making","volume":"199","author":"Hahn","year":"2009","journal-title":"Eur. J. Oper. Res."},{"key":"10.1016\/j.asoc.2017.04.053_bib0025","unstructured":"Tesla Forecast website https:\/\/www.teslaforecast.net\/TeslaModel.aspx."},{"key":"10.1016\/j.asoc.2017.04.053_bib0030","unstructured":"Website of Polish Power Exchange. https:\/\/www.tge.pl\/en."},{"key":"10.1016\/j.asoc.2017.04.053_bib0035","unstructured":"Polish Power Systems website. https:\/\/www.pse.pl\/?langid=2."},{"key":"10.1016\/j.asoc.2017.04.053_bib0040","unstructured":"Website of Polish Energy Regulatory Office. https:\/\/www.ure.gov.pl\/en\/."},{"key":"10.1016\/j.asoc.2017.04.053_bib0045","series-title":"Intraday Market Detailed Rules of Electricity Trading and Settlement","author":"Polish Power Exchange","year":"2014"},{"key":"10.1016\/j.asoc.2017.04.053_bib0050","series-title":"Day-Ahead Market Detailed Rules of Electricity Trading and Settlement","author":"Polish Power Exchange","year":"2014"},{"key":"10.1016\/j.asoc.2017.04.053_bib0055","series-title":"Instrukcja ruchu i eksploatacji sieci przesy\u0142owej","year":"2014"},{"key":"10.1016\/j.asoc.2017.04.053_bib0060","series-title":"Adaptive and Natural Computing Algorithms, Vol. 4432 of LNCS","first-page":"133","article-title":"Neural systems for short-term forecasting of electric power load","author":"B\u0105k","year":"2007"},{"issue":"10","key":"10.1016\/j.asoc.2017.04.053_bib0065","doi-asserted-by":"crossref","first-page":"12237","DOI":"10.1016\/j.eswa.2011.04.002","article-title":"Hierarchical estimator","volume":"38","author":"Brodowski","year":"2011","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2017.04.053_bib0070","first-page":"83","article-title":"On mean squared error of hierarchical estimator","volume":"20","author":"Brodowski","year":"2011","journal-title":"Schedae Inform."},{"key":"10.1016\/j.asoc.2017.04.053_bib0075","series-title":"Proceedings of the 11th International Conference on Artificial Intelligence and Soft Computing \u2013 Volume Part II, Vol. 7268 of LNCS","first-page":"22","article-title":"New specifics for a hierarchical estimator meta-algorithm","author":"Brodowski","year":"2012"},{"key":"10.1016\/j.asoc.2017.04.053_bib0080","unstructured":"Website of weather forecats from Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University. https:\/\/www.meteo.pl\/index_en.php."},{"key":"10.1016\/j.asoc.2017.04.053_bib0085","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.epsr.2012.04.009","article-title":"Application of {SOM} neural networks to short-term load forecasting: the Spanish electricity market case study","volume":"91","author":"L\u00f3pez","year":"2012","journal-title":"Electric Power Syst. Res."},{"key":"10.1016\/j.asoc.2017.04.053_bib0090","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.epsr.2016.04.003","article-title":"Short-term power load forecasting with ordinary differential equation substitutions of polynomial networks","volume":"137","author":"Zjavka","year":"2016","journal-title":"Electric Power Syst. Res."},{"key":"10.1016\/j.asoc.2017.04.053_bib0095","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.ijepes.2014.07.029","article-title":"A hybrid model based on data preprocessing for electrical power forecasting","volume":"64","author":"Xiao","year":"2015","journal-title":"Int. J. Electr. Power Energy Syst."},{"issue":"2","key":"10.1016\/j.asoc.2017.04.053_bib0100","doi-asserted-by":"crossref","first-page":"1055","DOI":"10.1109\/TII.2013.2285650","article-title":"Load forecasting using interval type-2 fuzzy logic systems: optimal type reduction","volume":"10","author":"Khosravi","year":"2014","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.asoc.2017.04.053_bib0105","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/j.knosys.2012.10.017","article-title":"A cooperative ant colony optimization-genetic algorithm approach for construction of energy demand forecasting knowledge-based expert systems","volume":"39","author":"Ghanbari","year":"2013","journal-title":"Know. Based Syst."},{"issue":"1","key":"10.1016\/j.asoc.2017.04.053_bib0110","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1109\/TPWRS.2010.2048585","article-title":"Load forecasting using hybrid models","volume":"26","author":"Hanmandlu","year":"2011","journal-title":"IEEE Trans. Power Syst."},{"issue":"1","key":"10.1016\/j.asoc.2017.04.053_bib0115","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.ijepes.2012.09.002","article-title":"A hybrid intelligent algorithm based short-term load forecasting approach","volume":"45","author":"Hooshmand","year":"2013","journal-title":"Electr. Power Energy Syst."},{"key":"10.1016\/j.asoc.2017.04.053_bib0120","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1016\/j.energy.2012.11.015","article-title":"Short-term load forecasting using {SVR} (support vector regression)-based radial basis function neural network with dual extended Kalman filter","volume":"49","author":"Ko","year":"2013","journal-title":"Energy"},{"key":"10.1016\/j.asoc.2017.04.053_bib0125","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.asoc.2013.12.001","article-title":"Hybrid psosvm method for short-term load forecasting during periods with significant temperature variations in city of burbank","volume":"16","author":"Selakov","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2017.04.053_bib0130","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.ijepes.2014.04.026","article-title":"Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search","volume":"62","author":"Sadaei","year":"2014","journal-title":"Int. J. Electr. Power Energy Syst."},{"key":"10.1016\/j.asoc.2017.04.053_bib0135","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1016\/j.energy.2016.11.034","article-title":"A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting","volume":"119","author":"Jiang","year":"2017","journal-title":"Energy"},{"key":"10.1016\/j.asoc.2017.04.053_bib0140","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.epsr.2016.08.031","article-title":"A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon","volume":"142","author":"Boroojeni","year":"2017","journal-title":"Electric Power Syst. Res."},{"issue":"0","key":"10.1016\/j.asoc.2017.04.053_bib0145","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.epsr.2015.03.027","article-title":"Improved short-term load forecasting using bagged neural networks","volume":"125","author":"Khwaja","year":"2015","journal-title":"Electric Power Syst. Res."},{"issue":"11","key":"10.1016\/j.asoc.2017.04.053_bib0150","doi-asserted-by":"crossref","first-page":"4427","DOI":"10.1016\/j.eswa.2013.01.047","article-title":"Load forecasting using a multivariate meta-learning system","volume":"40","author":"Matija\u0161","year":"2013","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2017.04.053_bib0155","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.neucom.2016.04.021","article-title":"Neural networks for pattern-based short-term load forecasting: a comparative study","volume":"205","author":"Dudek","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2017.04.053_bib0160","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.epsr.2015.09.001","article-title":"Pattern-based local linear regression models for short-term load forecasting","volume":"130","author":"Dudek","year":"2016","journal-title":"Electric Power Syst. Res."},{"key":"10.1016\/j.asoc.2017.04.053_bib0165","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.ijepes.2014.09.029","article-title":"Forecasting methods for balancing energy market in Poland","volume":"65","author":"Pop\u0142awski","year":"2015","journal-title":"Int. J. Electr. Power Energy Syst."},{"issue":"8","key":"10.1016\/j.asoc.2017.04.053_bib0170","doi-asserted-by":"crossref","first-page":"3628","DOI":"10.1016\/j.asoc.2013.04.007","article-title":"A spiking neural network (SNN) forecast engine for short-term electrical load forecasting","volume":"13","author":"Kulkarni","year":"2013","journal-title":"Appl. Soft Comput."},{"issue":"0","key":"10.1016\/j.asoc.2017.04.053_bib0175","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.asoc.2014.09.007","article-title":"Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression","volume":"25","author":"Hu","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.asoc.2017.04.053_bib0180","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1016\/j.ijepes.2014.07.043","article-title":"Short term load forecasting using wavelet transform combined with HoltWinters and weighted nearest neighbor models","volume":"64","author":"Sudheer","year":"2015","journal-title":"Int. J. Electr. Power Energy Syst."},{"key":"10.1016\/j.asoc.2017.04.053_bib0185","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.epsr.2015.01.002","article-title":"Short-term load forecasting by wavelet transform and evolutionary extreme learning machine","volume":"122","author":"Li","year":"2015","journal-title":"Electric Power Syst. Res."},{"key":"10.1016\/j.asoc.2017.04.053_bib0190","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/j.ijepes.2013.07.017","article-title":"A hybrid economic indices based short-term load forecasting system","volume":"54","author":"Lin","year":"2014","journal-title":"Int. J. Electr. Power Energy Syst."},{"key":"10.1016\/j.asoc.2017.04.053_bib0195","series-title":"Handbook for Neural Network Signal Processing","article-title":"Committee machines","author":"Tresp","year":"2001"},{"key":"10.1016\/j.asoc.2017.04.053_bib0200","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","article-title":"A decision theoretic generalization of online learning and an application to boosting","volume":"55","author":"Freund","year":"1997","journal-title":"J. Comput. Syst. Sci."},{"key":"10.1016\/j.asoc.2017.04.053_bib0205","series-title":"Proceedings of the Fourteenth International Conference on Machine Learning, ICML \u201997","first-page":"107","article-title":"Improving regressors using boosting techniques","author":"Drucker","year":"1997"},{"issue":"2-3","key":"10.1016\/j.asoc.2017.04.053_bib0210","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1023\/A:1013685603443","article-title":"Boosting methods for regression","volume":"47","author":"Duffy","year":"2002","journal-title":"Mach. Learn."},{"issue":"2","key":"10.1016\/j.asoc.2017.04.053_bib0215","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1162\/089976699300016746","article-title":"Boosting regression estimators","volume":"11","author":"Avnimelech","year":"1999","journal-title":"Neural Comput."},{"key":"10.1016\/j.asoc.2017.04.053_bib0220","series-title":"Proceedings of the 5-th Australian Conference on Artificial Intelligence, AI\u201992","first-page":"343","article-title":"Learning with continuous classes","author":"Quinlan","year":"1992"},{"key":"10.1016\/j.asoc.2017.04.053_bib0225","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1162\/neco.1994.6.2.181","article-title":"Hierarchical mixtures of experts and the EM algorithm","author":"Jordan","year":"1994","journal-title":"Neural Comput."},{"issue":"1","key":"10.1016\/j.asoc.2017.04.053_bib0230","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1016\/j.eswa.2006.10.007","article-title":"Hierarchical classifier with overlapping class groups","volume":"34","author":"Podolak","year":"2008","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.asoc.2017.04.053_bib0235","series-title":"Computer Recognition Systems, Vol. 57 of Advances in Soft Computing","first-page":"239","article-title":"A new notion of weakness in classification theory","author":"Podolak","year":"2009"},{"key":"10.1016\/j.asoc.2017.04.053_bib0240","series-title":"The Elements of Statistical Learning","author":"Hastie","year":"2009"},{"issue":"3","key":"10.1016\/j.asoc.2017.04.053_bib0245","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1109\/91.413225","article-title":"On cluster validity for the fuzzy c-means model","volume":"3","author":"Pal","year":"1995","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.asoc.2017.04.053_bib0250","series-title":"Transactions on Computational Intelligence (XIII)","article-title":"A validity criterion for fuzzy clustering","author":"Brodowski","year":"2014"},{"issue":"1","key":"10.1016\/j.asoc.2017.04.053_bib0255","doi-asserted-by":"crossref","first-page":"361","DOI":"10.5194\/gmd-7-361-2014","article-title":"The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations","volume":"7","author":"Walters","year":"2014","journal-title":"Geosci. Model Dev."},{"key":"10.1016\/j.asoc.2017.04.053_bib0260","doi-asserted-by":"crossref","first-page":"1414","DOI":"10.1175\/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2","article-title":"The Naval Research Laboratory's Coupled Ocean\/Atmospheric Mesoscale Prediction System (COAMPS)","volume":"125","author":"Hodur","year":"1997","journal-title":"Mon. Weather Rev."},{"key":"10.1016\/j.asoc.2017.04.053_bib0265","first-page":"3684","article-title":"Prediction of electric load using Kohonen Maps \u2013 application to the Polish electricity consumption","author":"Lendasse","year":"2002","journal-title":"Proceedings of the American Control Conference"},{"issue":"6","key":"10.1016\/j.asoc.2017.04.053_bib0270","doi-asserted-by":"crossref","first-page":"930","DOI":"10.1109\/TNN.2010.2045657","article-title":"Improved computation for Levenberg-Marquardt training","volume":"21","author":"Wilamowski","year":"2010","journal-title":"IEEE Trans. Neural Netw."},{"issue":"1","key":"10.1016\/j.asoc.2017.04.053_bib0275","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1145\/1656274.1656278","article-title":"The weka data mining software: an update","volume":"11","author":"Hall","year":"2009","journal-title":"SIGKDD Explor. Newsl."},{"key":"10.1016\/j.asoc.2017.04.053_bib0280","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1016\/j.asoc.2015.07.035","article-title":"Pattern similarity-based methods for short-term load forecasting part 2: models","volume":"36","author":"Dudek","year":"2015","journal-title":"Appl. Soft Comput."},{"issue":"3","key":"10.1016\/j.asoc.2017.04.053_bib0285","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"issue":"7","key":"10.1016\/j.asoc.2017.04.053_bib0290","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","article-title":"A fast learning algorithm for deep belief nets","volume":"18","author":"Hinton","year":"2006","journal-title":"Neural Comput."},{"key":"10.1016\/j.asoc.2017.04.053_bib0295","series-title":"Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS\u201906","first-page":"153","article-title":"Greedy layer-wise training of deep networks","author":"Bengio","year":"2006"},{"issue":"1","key":"10.1016\/j.asoc.2017.04.053_bib0300","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000006","article-title":"Learning deep architectures for ai, Found","volume":"2","author":"Bengio","year":"2009","journal-title":"Trends Mach. Learn."},{"key":"10.1016\/j.asoc.2017.04.053_bib0305","doi-asserted-by":"crossref","first-page":"374","DOI":"10.1016\/j.neucom.2016.12.027","article-title":"Generalized extreme learning machine autoencoder and a new deep neural network","volume":"230","author":"Sun","year":"2017","journal-title":"Neurocomputing"},{"issue":"Part 3","key":"10.1016\/j.asoc.2017.04.053_bib0310","doi-asserted-by":"crossref","first-page":"1688","DOI":"10.1016\/j.energy.2016.07.090","article-title":"Deep belief network based electricity load forecasting: an analysis of macedonian case","volume":"115","author":"Dedinec","year":"2016","journal-title":"Energy"},{"key":"10.1016\/j.asoc.2017.04.053_bib0315","series-title":"Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS\u201910)","article-title":"Understanding the difficulty of training deep feedforward neural networks","author":"Glorot","year":"2010"}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494617302351?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494617302351?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,11,30]],"date-time":"2018-11-30T07:39:39Z","timestamp":1543563579000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494617302351"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":63,"alternative-id":["S1568494617302351"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2017.04.053","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A hybrid system for forecasting 24-h power load profile for Polish electric grid","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2017.04.053","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}