{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T16:51:37Z","timestamp":1732035097614},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2014,10,1]],"date-time":"2014-10-01T00:00:00Z","timestamp":1412121600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Applied Soft Computing"],"published-print":{"date-parts":[[2014,10]]},"DOI":"10.1016\/j.asoc.2014.06.027","type":"journal-article","created":{"date-parts":[[2014,6,27]],"date-time":"2014-06-27T11:08:33Z","timestamp":1403867313000},"page":"452-459","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":230,"special_numbering":"C","title":["Forecasting wind speed using empirical mode decomposition and Elman neural network"],"prefix":"10.1016","volume":"23","author":[{"given":"Jujie","family":"Wang","sequence":"first","affiliation":[]},{"given":"Wenyu","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yaning","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jianzhou","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Zhangli","family":"Dang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.asoc.2014.06.027_bib0005","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1016\/j.rser.2008.02.002","article-title":"A review on the forecasting of wind speed and generated power","volume":"13","author":"Ma","year":"2009","journal-title":"Renew. Sustain. Energy Rev."},{"issue":"1","key":"10.1016\/j.asoc.2014.06.027_bib0010","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/S0301-4215(02)00250-1","article-title":"Electricity consumption and economic growth in China","volume":"32","author":"Shiu","year":"2004","journal-title":"Energy Policy"},{"issue":"9","key":"10.1016\/j.asoc.2014.06.027_bib0015","doi-asserted-by":"crossref","first-page":"5013","DOI":"10.1016\/j.rser.2011.07.053","article-title":"Development of offshore wind power in China","volume":"15","author":"Chen","year":"2011","journal-title":"Renew. Sustain. Energy Rev."},{"issue":"3","key":"10.1016\/j.asoc.2014.06.027_bib0020","doi-asserted-by":"crossref","first-page":"1668","DOI":"10.1016\/j.energy.2010.12.063","article-title":"A corrected hybrid approach for wind speed prediction in Hexi Corridor of China","volume":"36","author":"Guo","year":"2011","journal-title":"Energy"},{"key":"10.1016\/j.asoc.2014.06.027_bib0025","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1016\/j.apenergy.2010.10.031","article-title":"ARMA based approaches for forecasting the tuple of wind speed and direction","volume":"88","author":"Erdem","year":"2011","journal-title":"Appl. Energy"},{"key":"10.1016\/j.asoc.2014.06.027_bib0030","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.apenergy.2012.04.001","article-title":"Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction","volume":"98","author":"Liu","year":"2012","journal-title":"Appl. Energy"},{"issue":"2","key":"10.1016\/j.asoc.2014.06.027_bib0035","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1109\/TPWRS.2011.2160295","article-title":"A method for short-term wind power prediction with multiple observation points","volume":"27","author":"Khalid","year":"2012","journal-title":"IEEE Trans. Pow. Syst."},{"key":"10.1016\/j.asoc.2014.06.027_bib0040","doi-asserted-by":"crossref","first-page":"4870","DOI":"10.1016\/j.energy.2010.09.001","article-title":"Prediction of wind speed time series using modified Taylor Kriging method","volume":"35","author":"Liu","year":"2010","journal-title":"Energy"},{"issue":"6","key":"10.1016\/j.asoc.2014.06.027_bib0045","doi-asserted-by":"crossref","first-page":"1725","DOI":"10.1016\/j.rser.2007.01.015","article-title":"A review on the young history of the wind power short-term prediction","volume":"12","author":"Costa","year":"2008","journal-title":"Renew. Sustain. Energy Rev."},{"issue":"3","key":"10.1016\/j.asoc.2014.06.027_bib0050","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1016\/j.apenergy.2009.09.022","article-title":"A methodology to generate statistically dependent wind speed scenarios","volume":"87","author":"Morales","year":"2010","journal-title":"Appl. Energy"},{"issue":"3","key":"10.1016\/j.asoc.2014.06.027_bib0055","doi-asserted-by":"crossref","first-page":"934","DOI":"10.1016\/j.apenergy.2009.09.005","article-title":"The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria","volume":"87","author":"Fadare","year":"2010","journal-title":"Appl. Energy"},{"issue":"1\u20132","key":"10.1016\/j.asoc.2014.06.027_bib0060","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/S0167-6105(98)00192-5","article-title":"Short-term prediction of the power production from wind farms","volume":"80","author":"Landberg","year":"1999","journal-title":"J. Wind Eng. Ind. Aerodyn."},{"issue":"1","key":"10.1016\/j.asoc.2014.06.027_bib0065","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1002\/(SICI)1099-1824(199809)1:1<23::AID-WE9>3.0.CO;2-9","article-title":"A mathematical look at a physical power prediction model","volume":"1","author":"Landberg","year":"1998","journal-title":"Wind Energy"},{"issue":"1","key":"10.1016\/j.asoc.2014.06.027_bib0070","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.renene.2007.01.014","article-title":"Short term wind speed forecasting for wind turbine applications using linear prediction method","volume":"33","author":"Riahy","year":"2008","journal-title":"Renew. Energy"},{"key":"10.1016\/j.asoc.2014.06.027_bib0075","doi-asserted-by":"crossref","first-page":"1388","DOI":"10.1016\/j.renene.2008.09.006","article-title":"Day-ahead wind speed forecasting using f-ARIMA models","volume":"34","author":"Kavasseri","year":"2009","journal-title":"Renew. Energy"},{"issue":"1","key":"10.1016\/j.asoc.2014.06.027_bib0080","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/S0038-092X(97)00037-6","article-title":"Time series models to simulate and forecast hourly averaged wind speed in Quetta: Pakistan","volume":"61","author":"Lalarukh","year":"1997","journal-title":"Solar Energy"},{"issue":"1","key":"10.1016\/j.asoc.2014.06.027_bib0085","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.solener.2004.09.013","article-title":"Forecast of hourly average wind speed with ARMA models in Navarre","volume":"79","author":"Torres","year":"2005","journal-title":"Sol. Energy"},{"issue":"4","key":"10.1016\/j.asoc.2014.06.027_bib0090","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1016\/j.renene.2004.07.015","article-title":"Application of a control algorithm for wind speed prediction and active power generation","volume":"30","author":"Flores","year":"2005","journal-title":"Renew. Energy"},{"issue":"6","key":"10.1016\/j.asoc.2014.06.027_bib0095","doi-asserted-by":"crossref","first-page":"1451","DOI":"10.1016\/j.renene.2008.10.017","article-title":"Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction","volume":"34","author":"Salcedo-Sanz","year":"2009","journal-title":"Renew. Energy"},{"issue":"1","key":"10.1016\/j.asoc.2014.06.027_bib0100","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1016\/j.renene.2008.03.014","article-title":"Short term wind speed forecasting in La Venta: Oaxaca, M\u00e9xico, using artificial neural networks","volume":"34","author":"Cadenas","year":"2009","journal-title":"Renew. Energy"},{"issue":"1","key":"10.1016\/j.asoc.2014.06.027_bib0105","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/S0960-1481(99)00125-1","article-title":"A comparison of various forecasting techniques applied to mean hourly wind speed time series","volume":"21","author":"Sfetsos","year":"2000","journal-title":"Renew. Energy"},{"issue":"7\u20139","key":"10.1016\/j.asoc.2014.06.027_bib0110","doi-asserted-by":"crossref","first-page":"1525","DOI":"10.1016\/j.neucom.2006.01.032","article-title":"A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation","volume":"70","author":"Barbounis","year":"2007","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2014.06.027_bib0115","doi-asserted-by":"crossref","first-page":"939","DOI":"10.1016\/j.renene.2003.11.009","article-title":"Support vector machines for wind speed prediction","volume":"29","author":"Mohandes","year":"2004","journal-title":"Renew. Energy"},{"key":"10.1016\/j.asoc.2014.06.027_bib0120","series-title":"Backpropagation: Theory, Architectures, and Applications","author":"Chauvin","year":"1995"},{"key":"10.1016\/j.asoc.2014.06.027_bib0125","series-title":"Neural Network: a Comprehensive Foundation","author":"Haykin","year":"1999"},{"key":"10.1016\/j.asoc.2014.06.027_bib0130","series-title":"Neural Networks in Finance: Gaining Predictive Edge in the Market","author":"McNelis","year":"2004"},{"key":"10.1016\/j.asoc.2014.06.027_bib0135","series-title":"Neural Network Design","author":"Hagan","year":"1996"},{"issue":"5","key":"10.1016\/j.asoc.2014.06.027_bib0140","doi-asserted-by":"crossref","first-page":"855","DOI":"10.1109\/TPAMI.2008.137","article-title":"A novel connectionist system for unconstrained handwriting recognition","volume":"31","author":"Graves","year":"2009","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.asoc.2014.06.027_bib0145","doi-asserted-by":"crossref","first-page":"2540","DOI":"10.1016\/j.neucom.2010.06.004","article-title":"Chaotic time series prediction with residual analysis method using hybrid Elman\u2013NARX neural networks","volume":"73","author":"Ardalani-Farsa","year":"2010","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2014.06.027_bib0150","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.neucom.2012.01.014","article-title":"Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction","volume":"86","author":"Chandra","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2014.06.027_bib0155","doi-asserted-by":"crossref","first-page":"869","DOI":"10.1007\/s00521-011-0609-3","article-title":"Elman neural networks for characterizing voids in welded strips: a study","volume":"21","author":"Cacciola","year":"2012","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.asoc.2014.06.027_bib0160","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1098\/rspa.1998.0193","article-title":"The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis","volume":"454","author":"Huang","year":"1998","journal-title":"Proc. R. Soc. Lond. A \u2013 Math. Phys. Eng. Sci."},{"key":"10.1016\/j.asoc.2014.06.027_bib0165","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1016\/j.knosys.2011.09.002","article-title":"Forecasting tourism demand based on empirical mode decomposition and neural network","volume":"26","author":"Chen","year":"2012","journal-title":"Knowl. Based Syst."},{"issue":"2","key":"10.1016\/j.asoc.2014.06.027_bib0170","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/j.ymssp.2004.11.002","article-title":"A fault diagnosis approach for roller bearings based on EMD method and AR model","volume":"20","author":"Cheng","year":"2006","journal-title":"Mech. Syst. Signal Process."},{"issue":"3","key":"10.1016\/j.asoc.2014.06.027_bib0175","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1016\/j.eneco.2007.02.012","article-title":"A new approach for crude oil price analysis based on Empirical Mode Decomposition","volume":"30","author":"Zhang","year":"2008","journal-title":"Energy Econ."},{"key":"10.1016\/j.asoc.2014.06.027_bib0180","doi-asserted-by":"crossref","first-page":"801","DOI":"10.1016\/j.neucom.2004.10.077","article-title":"Empirical mode decomposition: a method for analyzing neural data","volume":"65\u201366","author":"Liang","year":"2005","journal-title":"Neurocomputing"},{"key":"10.1016\/j.asoc.2014.06.027_bib0185","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1207\/s15516709cog1402_1","article-title":"Finding structure in time","volume":"15","author":"Elman","year":"1990","journal-title":"Cognitive"},{"key":"10.1016\/j.asoc.2014.06.027_bib0190","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1016\/j.renene.2008.03.014","article-title":"Short term wind speed forecasting in La Venta, Oaxaca, M\u00e9xico, using artificial neural networks","volume":"34","author":"Cadenas","year":"2009","journal-title":"Renew. Energy"},{"key":"10.1016\/j.asoc.2014.06.027_bib0195","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1007\/978-3-642-05253-8_6","article-title":"ARIMA model estimated by particle swarm optimization algorithm for consumer price index forecasting, lecture notes in computer Science","volume":"5855","author":"Wang","year":"2009","journal-title":"Artif. Intell. Comput. Intell."},{"key":"10.1016\/j.asoc.2014.06.027_bib0200","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/j.renene.2011.06.023","article-title":"Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model","volume":"37","author":"Guo","year":"2012","journal-title":"Renew. Energy"},{"key":"10.1016\/j.asoc.2014.06.027_bib0205","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1016\/j.ejps.2005.04.010","article-title":"Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm","volume":"25","author":"Plumb","year":"2005","journal-title":"Eur. J. Pharm. Sci."},{"key":"10.1016\/j.asoc.2014.06.027_bib0210","series-title":"Statistical Learning Theory","author":"Vapnik","year":"1998"}],"container-title":["Applied Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494614003019?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1568494614003019?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,12]],"date-time":"2019-08-12T00:08:04Z","timestamp":1565568484000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1568494614003019"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,10]]},"references-count":42,"alternative-id":["S1568494614003019"],"URL":"https:\/\/doi.org\/10.1016\/j.asoc.2014.06.027","relation":{},"ISSN":["1568-4946"],"issn-type":[{"value":"1568-4946","type":"print"}],"subject":[],"published":{"date-parts":[[2014,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Forecasting wind speed using empirical mode decomposition and Elman neural network","name":"articletitle","label":"Article Title"},{"value":"Applied Soft Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.asoc.2014.06.027","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}