{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T04:25:39Z","timestamp":1728447939835},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T00:00:00Z","timestamp":1719964800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102929","type":"journal-article","created":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T16:47:32Z","timestamp":1720111652000},"page":"102929","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Can physician judgment enhance model trustworthiness? A case study on predicting pathological lymph nodes in rectal cancer"],"prefix":"10.1016","volume":"154","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2565-1374","authenticated-orcid":false,"given":"Kazuma","family":"Kobayashi","sequence":"first","affiliation":[]},{"given":"Yasuyuki","family":"Takamizawa","sequence":"additional","affiliation":[]},{"given":"Mototaka","family":"Miyake","sequence":"additional","affiliation":[]},{"given":"Sono","family":"Ito","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Tatsuya","family":"Nakatsuka","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Akagi","sequence":"additional","affiliation":[]},{"given":"Tatsuya","family":"Harada","sequence":"additional","affiliation":[]},{"given":"Yukihide","family":"Kanemitsu","sequence":"additional","affiliation":[]},{"given":"Ryuji","family":"Hamamoto","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.artmed.2024.102929_b1","doi-asserted-by":"crossref","first-page":"1328","DOI":"10.1038\/s41591-021-01461-z","article-title":"AI in medicine must be explainable","volume":"27","author":"Kundu","year":"2021","journal-title":"Nature Med"},{"key":"10.1016\/j.artmed.2024.102929_b2","doi-asserted-by":"crossref","first-page":"e745","DOI":"10.1016\/S2589-7500(21)00208-9","article-title":"The false hope of current approaches to explainable artificial intelligence in health care","volume":"3","author":"Ghassemi","year":"2021","journal-title":"Lancet Digit Health"},{"key":"10.1016\/j.artmed.2024.102929_b3","doi-asserted-by":"crossref","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","article-title":"Peeking inside the black-box: A survey on explainable artificial intelligence (XAI)","volume":"6","author":"Adadi","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.artmed.2024.102929_b4","doi-asserted-by":"crossref","DOI":"10.1038\/s41746-020-0254-2","article-title":"Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency","volume":"3","author":"Cutillo","year":"2020","journal-title":"NPJ Digit Med"},{"key":"10.1016\/j.artmed.2024.102929_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2020.103655","article-title":"The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies","volume":"113","author":"Markus","year":"2021","journal-title":"J Biomed Inform"},{"key":"10.1016\/j.artmed.2024.102929_b6","doi-asserted-by":"crossref","first-page":"e2210309","DOI":"10.1001\/jamanetworkopen.2022.10309","article-title":"Perspectives of Patients About Artificial Intelligence in Health Care","volume":"5","author":"Khullar","year":"2022","journal-title":"JAMA Netw Open"},{"key":"10.1016\/j.artmed.2024.102929_b7","doi-asserted-by":"crossref","first-page":"1812","DOI":"10.1038\/s41562-023-01711-9","article-title":"Measuring trustworthiness is crucial for medical AI tools","volume":"7","author":"Kundu","year":"2023","journal-title":"Nat Hum Behav"},{"issue":"4","key":"10.1016\/j.artmed.2024.102929_b8","doi-asserted-by":"crossref","DOI":"10.1145\/3625287","article-title":"Explainable Deep Learning Methods in Medical Image Classification: A Survey","volume":"56","author":"Patr\u00edcio","year":"2023","journal-title":"ACM Comput Surv"},{"year":"2022","series-title":"The Disagreement Problem in Explainable Machine Learning: A Practitioner\u2019s Perspective","author":"Krishna","key":"10.1016\/j.artmed.2024.102929_b9"},{"year":"2017","series-title":"Towards A Rigorous Science of Interpretable Machine Learning","author":"Doshi-Velez","key":"10.1016\/j.artmed.2024.102929_b10"},{"key":"10.1016\/j.artmed.2024.102929_b11","series-title":"Machine learning for healthcare","article-title":"What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use","author":"Tonekaboni","year":"2019"},{"key":"10.1016\/j.artmed.2024.102929_b12","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1038\/s41746-023-00813-y","article-title":"Explainable artificial intelligence incorporated with domain knowledge diagnosing early gastric neoplasms under white light endoscopy","volume":"6","author":"Dong","year":"2023","journal-title":"NPJ Digit Med"},{"key":"10.1016\/j.artmed.2024.102929_b13","doi-asserted-by":"crossref","first-page":"1383","DOI":"10.1038\/s41598-023-28633-w","article-title":"Non-task expert physicians benefit from correct explainable AI advice when reviewing X-rays","volume":"13","author":"Gaube","year":"2023","journal-title":"Sci Rep"},{"issue":"5","key":"10.1016\/j.artmed.2024.102929_b14","doi-asserted-by":"crossref","DOI":"10.3390\/electronics10050593","article-title":"Evaluating the Quality of Machine Learning Explanations: A Survey on Methods and Metrics","volume":"10","author":"Zhou","year":"2021","journal-title":"Electronics"},{"year":"2023","series-title":"A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions","author":"Huang","key":"10.1016\/j.artmed.2024.102929_b15"},{"key":"10.1016\/j.artmed.2024.102929_b16","doi-asserted-by":"crossref","unstructured":"Lakkaraju H, Bastani O. \u201dHow Do I Fool You?\u201d: Manipulating User Trust via Misleading Black Box Explanations. In: Proceedings of the AAAI\/ACM conference on AI, ethics, and society. AIES, 2020, p. 79\u201385, URL.","DOI":"10.1145\/3375627.3375833"},{"key":"10.1016\/j.artmed.2024.102929_b17","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pdig.0000085","article-title":"Uncertainty-aware deep learning in healthcare: A scoping review","volume":"1","author":"Loftus","year":"2022","journal-title":"PLOS Digit Health"},{"key":"10.1016\/j.artmed.2024.102929_b18","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1038\/s41746-023-00753-7","article-title":"Making machine learning matter to clinicians: model actionability in medical decision-making","volume":"6","author":"Ehrmann","year":"2023","journal-title":"NPJ Digit Med"},{"key":"10.1016\/j.artmed.2024.102929_b19","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.neucom.2019.01.103","article-title":"Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks","volume":"338","author":"Wang","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.artmed.2024.102929_b20","doi-asserted-by":"crossref","unstructured":"Chefer H, Gur S, Wolf L. Transformer Interpretability Beyond Attention Visualization. In: IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 782\u201391. http:\/\/dx.doi.org\/10.1109\/CVPR46437.2021.00084.","DOI":"10.1109\/CVPR46437.2021.00084"},{"key":"10.1016\/j.artmed.2024.102929_b21","series-title":"Advances in neural information processing systems","article-title":"Attention is All you Need","volume":"Vol. 30","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.artmed.2024.102929_b22","series-title":"North American chapter of the association for computational linguistics","first-page":"4171","article-title":"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding","author":"Devlin","year":"2019"},{"year":"2018","series-title":"Improving language understanding by generative pre-training","author":"Radford","key":"10.1016\/j.artmed.2024.102929_b23"},{"key":"10.1016\/j.artmed.2024.102929_b24","doi-asserted-by":"crossref","first-page":"12113","DOI":"10.1109\/TPAMI.2023.3275156","article-title":"Multimodal Learning With Transformers: A Survey","volume":"45","author":"Xu","year":"2023","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.artmed.2024.102929_b25","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1038\/s41551-023-01045-x","article-title":"A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics","volume":"7","author":"Zhou","year":"2023","journal-title":"Nat Biomed Eng"},{"key":"10.1016\/j.artmed.2024.102929_b26","unstructured":"Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In: International conference on learning representations. ICLR, 2021, URL."},{"year":"2022","series-title":"3D Vision with Transformers: A Survey","author":"Lahoud","key":"10.1016\/j.artmed.2024.102929_b27"},{"key":"10.1016\/j.artmed.2024.102929_b28","series-title":"Advances in neural information processing systems","first-page":"18932","article-title":"Revisiting deep learning models for tabular data","volume":"Vol. 34","author":"Gorishniy","year":"2021"},{"key":"10.1016\/j.artmed.2024.102929_b29","doi-asserted-by":"crossref","unstructured":"Barz B, Denzler J. Deep Learning on Small Datasets without Pre-Training using Cosine Loss. In: Winter conference on applications of computer vision. WACV, 2020, p. 1360\u20139. http:\/\/dx.doi.org\/10.1109\/WACV45572.2020.9093286.","DOI":"10.1109\/WACV45572.2020.9093286"},{"key":"10.1016\/j.artmed.2024.102929_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.metrad.2023.100003","article-title":"A review of uncertainty estimation and its application in medical imaging","volume":"1","author":"Zou","year":"2023","journal-title":"Meta-Radiol"},{"key":"10.1016\/j.artmed.2024.102929_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.ejrad.2022.110592","article-title":"A systematic review on the use of explainability in deep learning systems for computer aided diagnosis in radiology: Limited use of explainable AI?","volume":"157","author":"Groen","year":"2022","journal-title":"Eur J Radiol"},{"key":"10.1016\/j.artmed.2024.102929_b32","series-title":"North American chapter of the association for computational linguistics","first-page":"3543","article-title":"Attention is not Explanation","author":"Jain","year":"2019"},{"key":"10.1016\/j.artmed.2024.102929_b33","doi-asserted-by":"crossref","unstructured":"Wiegreffe S, Pinter Y. Attention is not not Explanation. In: Empirical methods in natural language processing and international joint conference on natural language processing. EMNLP-IJCNLP, 2019, p. 11\u201320. http:\/\/dx.doi.org\/10.18653\/v1\/D19-1002, URL.","DOI":"10.18653\/v1\/D19-1002"},{"key":"10.1016\/j.artmed.2024.102929_b34","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1056\/NEJM199807233390403","article-title":"Micrometastases and Survival in Stage II Colorectal Cancer","volume":"339","author":"An","year":"1998","journal-title":"N Engl J Med"},{"key":"10.1016\/j.artmed.2024.102929_b35","doi-asserted-by":"crossref","first-page":"865","DOI":"10.1001\/jamasurg.2021.2380","article-title":"Characteristics of Early-Onset vs Late-Onset Colorectal Cancer: A Review","volume":"156","author":"Zaborowski","year":"2021","journal-title":"JAMA Surg"},{"key":"10.1016\/j.artmed.2024.102929_b36","doi-asserted-by":"crossref","first-page":"567","DOI":"10.6004\/jnccn.2023.5012","article-title":"Updates in the Treatment of Metastatic Colorectal Cancer","volume":"21","author":"Malla","year":"2023","journal-title":"J Natl Compr Canc Netw"},{"key":"10.1016\/j.artmed.2024.102929_b37","doi-asserted-by":"crossref","first-page":"411","DOI":"10.3892\/ol.2011.490","article-title":"Occult tumor metastasis and the prognostic value of sentinel lymph nodes in rectal cancer","volume":"3","author":"Guo","year":"2012","journal-title":"Oncol Lett"},{"key":"10.1016\/j.artmed.2024.102929_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.ejrad.2021.109636","article-title":"USPIO-enhanced MRI of lymph nodes in rectal cancer: A node-to-node comparison with histopathology","volume":"138","author":"Stijns","year":"2021","journal-title":"Eur J Radiol"},{"key":"10.1016\/j.artmed.2024.102929_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.ebiom.2020.102780","article-title":"Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-mri for rectal cancer: A multicentre study","volume":"56","author":"Zhao","year":"2020","journal-title":"EBioMedicine"},{"key":"10.1016\/j.artmed.2024.102929_b40","doi-asserted-by":"crossref","DOI":"10.3389\/fonc.2021.709070","article-title":"Magnetic Resonance Imaging Evaluation of the Accuracy of Various Lymph Node Staging Criteria in Rectal Cancer: A Systematic Review and Meta-Analysis","volume":"11","author":"Zhuang","year":"2021","journal-title":"Front Oncol"},{"key":"10.1016\/j.artmed.2024.102929_b41","doi-asserted-by":"crossref","unstructured":"Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining Explanations: An Overview of Interpretability of Machine Learning. In: International conference on data science and advanced analytics. DSAA, 2018, p. 80\u20139. http:\/\/dx.doi.org\/10.1109\/DSAA.2018.00018.","DOI":"10.1109\/DSAA.2018.00018"},{"key":"10.1016\/j.artmed.2024.102929_b42","doi-asserted-by":"crossref","unstructured":"Bu\u00e7inca Z, Lin P, Gajos KZ, Glassman EL. Proxy Tasks and Subjective Measures Can Be Misleading in Evaluating Explainable AI Systems. In: International conference on intelligent user interfaces. IUI, 2020, p. 454\u201364, URL.","DOI":"10.1145\/3377325.3377498"},{"key":"10.1016\/j.artmed.2024.102929_b43","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1097\/ALN.0000000000003385","article-title":"Autopilots in the Operating Room","volume":"133","author":"Ruskin","year":"2020","journal-title":"Anesthesiology"},{"key":"10.1016\/j.artmed.2024.102929_b44","doi-asserted-by":"crossref","DOI":"10.1148\/radiol.222176","article-title":"Automation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader Performance","volume":"307","author":"Dratsch","year":"2023","journal-title":"Radiology"},{"key":"10.1016\/j.artmed.2024.102929_b45","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1038\/s42256-019-0048-x","article-title":"Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead","volume":"1","author":"Rudin","year":"2019","journal-title":"Nat Mach Intell"},{"key":"10.1016\/j.artmed.2024.102929_b46","unstructured":"Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: International conference on learning representations. ICLR, 2015."},{"key":"10.1016\/j.artmed.2024.102929_b47","series-title":"Advances in neural information processing systems","first-page":"4694","article-title":"When Does Label Smoothing Help?","author":"M\u00fcller","year":"2019"},{"key":"10.1016\/j.artmed.2024.102929_b48","series-title":"British machine vision association","first-page":"119.1","article-title":"Learning local feature descriptors with triplets and shallow convolutional neural networks","author":"Balntas","year":"2016"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001714?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001714?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,8]],"date-time":"2024-10-08T13:54:20Z","timestamp":1728395660000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724001714"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":48,"alternative-id":["S0933365724001714"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102929","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Can physician judgment enhance model trustworthiness? A case study on predicting pathological lymph nodes in rectal cancer","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102929","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102929"}}