{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,8]],"date-time":"2024-10-08T04:24:43Z","timestamp":1728361483509},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102925","type":"journal-article","created":{"date-parts":[[2024,6,28]],"date-time":"2024-06-28T18:44:35Z","timestamp":1719600275000},"page":"102925","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Leveraging VQ-VAE tokenization for autoregressive modeling of medical time series"],"prefix":"10.1016","volume":"154","author":[{"ORCID":"http:\/\/orcid.org\/0009-0004-4154-7798","authenticated-orcid":false,"given":"Yoonhyung","family":"Lee","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0001-9249-2852","authenticated-orcid":false,"given":"Younhyung","family":"Chae","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2547-7051","authenticated-orcid":false,"given":"Kyomin","family":"Jung","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.artmed.2024.102925_b1","series-title":"2018 IEEE 15th international symposium on biomedical imaging","first-page":"734","article-title":"GAN-based synthetic brain MR image generation","author":"Han","year":"2018"},{"year":"2022","series-title":"Medical diffusion\u2013denoising diffusion probabilistic models for 3D medical image generation","author":"Khader","key":"10.1016\/j.artmed.2024.102925_b2"},{"issue":"3","key":"10.1016\/j.artmed.2024.102925_b3","doi-asserted-by":"crossref","first-page":"596","DOI":"10.1093\/jamia\/ocaa262","article-title":"SynTEG: A framework for temporal structured electronic health data simulation","volume":"28","author":"Zhang","year":"2020","journal-title":"J Am Med Inform Assoc"},{"key":"10.1016\/j.artmed.2024.102925_b4","series-title":"Proceedings of the 2022 conference on empirical methods in natural language processing","first-page":"2873","article-title":"PromptEHR: Conditional electronic healthcare records generation with prompt learning","author":"Wang","year":"2022"},{"year":"2017","series-title":"Real-valued (medical) time series generation with recurrent conditional GANs","author":"Esteban","key":"10.1016\/j.artmed.2024.102925_b5"},{"issue":"7","key":"10.1016\/j.artmed.2024.102925_b6","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pdig.0000074","article-title":"Conditional generation of medical time series for extrapolation to underrepresented populations","volume":"1","author":"Bing","year":"2022","journal-title":"PLOS Digit Health"},{"key":"10.1016\/j.artmed.2024.102925_b7","article-title":"Generative adversarial networks in medical image augmentation: A review","author":"Chen","year":"2022","journal-title":"Comput Biol Med"},{"year":"2018","series-title":"Differentially private generative adversarial network","author":"Xie","key":"10.1016\/j.artmed.2024.102925_b8"},{"key":"10.1016\/j.artmed.2024.102925_b9","unstructured":"Yoon J, Jordon J, van der Schaar M. PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees. In: International conference on learning representations. 2019."},{"key":"10.1016\/j.artmed.2024.102925_b10","series-title":"International conference on machine learning","first-page":"1747","article-title":"Pixel recurrent neural networks","author":"Van Den Oord","year":"2016"},{"year":"2016","series-title":"Wavenet: A generative model for raw audio","author":"Oord","key":"10.1016\/j.artmed.2024.102925_b11"},{"key":"10.1016\/j.artmed.2024.102925_b12","article-title":"Time-series generative adversarial networks","volume":"32","author":"Yoon","year":"2019","journal-title":"Adv Neural Inf Process Syst"},{"key":"10.1016\/j.artmed.2024.102925_b13","article-title":"Neural discrete representation learning","volume":"30","author":"Van Den Oord","year":"2017","journal-title":"Adv Neural Inf Process Syst"},{"key":"10.1016\/j.artmed.2024.102925_b14","doi-asserted-by":"crossref","unstructured":"Esser P, Rombach R, Ommer B. Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. 2021, p. 12873\u201383.","DOI":"10.1109\/CVPR46437.2021.01268"},{"key":"10.1016\/j.artmed.2024.102925_b15","series-title":"International conference on machine learning","first-page":"8821","article-title":"Zero-shot text-to-image generation","author":"Ramesh","year":"2021"},{"year":"2023","series-title":"Neural codec language models are zero-shot text to speech synthesizers","author":"Wang","key":"10.1016\/j.artmed.2024.102925_b16"},{"key":"10.1016\/j.artmed.2024.102925_b17","doi-asserted-by":"crossref","unstructured":"Shokri R, Stronati M, Song C, Shmatikov V. Membership inference attacks against machine learning models. In: 2017 IEEE symposium on security and privacy. SP, IEEE; p. 3\u201318.","DOI":"10.1109\/SP.2017.41"},{"key":"10.1016\/j.artmed.2024.102925_b18","doi-asserted-by":"crossref","unstructured":"McLachlan S, Dube K, Gallagher T. Using the CareMap with Health Incidents Statistics for Generating the Realistic Synthetic Electronic Healthcare Record. In: 2016 IEEE international conference on healthcare informatics. ICHI, 2016, p. 439\u201348. http:\/\/dx.doi.org\/10.1109\/ICHI.2016.83.","DOI":"10.1109\/ICHI.2016.83"},{"issue":"11","key":"10.1016\/j.artmed.2024.102925_b19","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1145\/3422622","article-title":"Generative adversarial networks","volume":"63","author":"Goodfellow","year":"2020","journal-title":"Commun ACM"},{"year":"2013","series-title":"Auto-encoding variational bayes","author":"Kingma","key":"10.1016\/j.artmed.2024.102925_b20"},{"key":"10.1016\/j.artmed.2024.102925_b21","unstructured":"Yu J, Li X, Koh JY, Zhang H, Pang R, Qin J, Ku A, Xu Y, Baldridge J, Wu Y. Vector-quantized Image Modeling with Improved VQGAN. In: International conference on learning representations. 2022."},{"year":"2022","series-title":"Scaling autoregressive models for content-rich text-to-image generation","author":"Yu","key":"10.1016\/j.artmed.2024.102925_b22"},{"key":"10.1016\/j.artmed.2024.102925_b23","doi-asserted-by":"crossref","unstructured":"Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S. Least squares generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 2794\u2013802.","DOI":"10.1109\/ICCV.2017.304"},{"key":"10.1016\/j.artmed.2024.102925_b24","unstructured":"Holtzman A, Buys J, Du L, Forbes M, Choi Y. The Curious Case of Neural Text Degeneration. In: International conference on learning representations. 2020."},{"key":"10.1016\/j.artmed.2024.102925_b25","doi-asserted-by":"crossref","unstructured":"Wang S, McDermott MBA, Chauhan G, Ghassemi M, Hughes MC, Naumann T. MIMIC-Extract: A Data Extraction, Preprocessing, and Representation Pipeline for MIMIC-III. In: Proceedings of the ACM conference on health, inference, and learning. CHIL \u201920, NY, USA; ISBN: 9781450370462, 2020, p. 222\u201335.","DOI":"10.1145\/3368555.3384469"},{"key":"10.1016\/j.artmed.2024.102925_b26","series-title":"ICLR (poster)","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2015"},{"key":"10.1016\/j.artmed.2024.102925_b27","series-title":"European conference on computer vision","first-page":"630","article-title":"Identity mappings in deep residual networks","author":"He","year":"2016"},{"key":"10.1016\/j.artmed.2024.102925_b28","article-title":"A kernel method for the two-sample-problem","volume":"19","author":"Gretton","year":"2006","journal-title":"Adv Neural Inf Process Syst"},{"year":"2018","series-title":"Improving language understanding by generative pre-training","author":"Radford","key":"10.1016\/j.artmed.2024.102925_b29"},{"issue":"2","key":"10.1016\/j.artmed.2024.102925_b30","article-title":"Random search for hyper-parameter optimization","volume":"13","author":"Bergstra","year":"2012","journal-title":"J Mach Learn Res"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001672?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001672?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,7]],"date-time":"2024-10-07T20:16:48Z","timestamp":1728332208000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724001672"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":30,"alternative-id":["S0933365724001672"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102925","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Leveraging VQ-VAE tokenization for autoregressive modeling of medical time series","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102925","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102925"}}