{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T00:36:34Z","timestamp":1722990994782},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102924","type":"journal-article","created":{"date-parts":[[2024,6,26]],"date-time":"2024-06-26T23:49:39Z","timestamp":1719445779000},"page":"102924","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Reshaping free-text radiology notes into structured reports with generative question answering transformers"],"prefix":"10.1016","volume":"154","author":[{"ORCID":"http:\/\/orcid.org\/0009-0006-0359-5128","authenticated-orcid":false,"given":"Laura","family":"Bergomi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2887-088X","authenticated-orcid":false,"given":"Tommaso M.","family":"Buonocore","sequence":"additional","affiliation":[]},{"given":"Paolo","family":"Antonazzo","sequence":"additional","affiliation":[]},{"given":"Lorenzo","family":"Alberghi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6974-9808","authenticated-orcid":false,"given":"Riccardo","family":"Bellazzi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5479-2766","authenticated-orcid":false,"given":"Lorenzo","family":"Preda","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9193-9309","authenticated-orcid":false,"given":"Chandra","family":"Bortolotto","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0679-828X","authenticated-orcid":false,"given":"Enea","family":"Parimbelli","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.artmed.2024.102924_bb0005","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1186\/s13326-018-0179-8","article-title":"Clinical natural language processing in languages other than English: opportunities and challenges","volume":"9","author":"N\u00e9v\u00e9ol","year":"2018","journal-title":"J Biomed Semantics"},{"issue":"2","key":"10.1016\/j.artmed.2024.102924_bb0010","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1148\/radiol.2018171820","article-title":"Current applications and future impact of machine learning in radiology","volume":"288","author":"Choy","year":"2018","journal-title":"Radiology"},{"issue":"1","key":"10.1016\/j.artmed.2024.102924_bb0015","first-page":"1","article-title":"European Society of Radiology (ESR). ESR paper on structured reporting in radiology. Insights","volume":"9","year":"2018","journal-title":"Imaging"},{"key":"10.1016\/j.artmed.2024.102924_bb0020","first-page":"199","article-title":"European Society of Radiology (ESR). ESR paper on structured reporting in radiology\u2014update 2023. Insights","volume":"14","year":"2023","journal-title":"Imaging"},{"key":"10.1016\/j.artmed.2024.102924_bb0025","unstructured":"Il Referto Strutturato \u2013 Fondazione SIRM. Published December 30, 2021. Accessed February 8, 2024. https:\/\/www.fondazionesirm.org\/il-referto-strutturato\/."},{"issue":"2","key":"10.1016\/j.artmed.2024.102924_bb0030","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1148\/radiol.16142770","article-title":"Natural language processing in radiology: a systematic review","volume":"279","author":"Pons","year":"2016","journal-title":"Radiology"},{"issue":"April 18, 2019","key":"10.1016\/j.artmed.2024.102924_bb0035","article-title":"Atto medico radiologico","author":"Documento","year":"2019","journal-title":"SIRM Published"},{"key":"10.1016\/j.artmed.2024.102924_bb0040","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1186\/s13244-019-0831-6","article-title":"Redefining the structure of structured reporting in radiology","volume":"11","author":"Nobel","year":"2020","journal-title":"Insights Imaging"},{"issue":"5","key":"10.1016\/j.artmed.2024.102924_bb0045","doi-asserted-by":"crossref","first-page":"1934","DOI":"10.1007\/s00330-016-4553-6","article-title":"Usage of structured reporting in radiological practice: results from an Italian online survey","volume":"27","author":"Faggioni","year":"2017","journal-title":"Eur Radiol"},{"issue":"6","key":"10.1016\/j.artmed.2024.102924_bb0050","doi-asserted-by":"crossref","first-page":"1658","DOI":"10.1148\/rg.2020200020","article-title":"How to create a great radiology report","volume":"40","author":"Hartung","year":"2020","journal-title":"RadioGraphics"},{"key":"10.1016\/j.artmed.2024.102924_bb0055","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.jbi.2017.07.012","article-title":"Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review","volume":"73","author":"Kreimeyer","year":"2017","journal-title":"J Biomed Inform"},{"issue":"1","key":"10.1016\/j.artmed.2024.102924_bb0060","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1186\/s12911-021-01533-7","article-title":"A systematic review of natural language processing applied to radiology reports","volume":"21","author":"Casey","year":"2021","journal-title":"BMC Med Inform Decis Mak"},{"issue":"2","key":"10.1016\/j.artmed.2024.102924_bb0065","first-page":"93","article-title":"Good practice for radiological reporting. Guidelines from the European Society of Radiology (ESR). Insights","volume":"2","author":"European Society of Radiology (ESR)","year":"2011","journal-title":"Imaging"},{"issue":"17","key":"10.1016\/j.artmed.2024.102924_bb0070","doi-asserted-by":"crossref","first-page":"4007","DOI":"10.3390\/jcm10174007","article-title":"Computed tomography structured reporting in the staging of lymphoma: a Delphi consensus proposal","volume":"10","author":"Granata","year":"2021","journal-title":"J Clin Med"},{"issue":"1","key":"10.1016\/j.artmed.2024.102924_bb0075","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1186\/s13244-023-01392-y","article-title":"Efficient structured reporting in radiology using an intelligent dialogue system based on speech recognition and natural language processing","volume":"14","author":"Jorg","year":"2023","journal-title":"Insights Imaging"},{"issue":"9","key":"10.1016\/j.artmed.2024.102924_bb0080","doi-asserted-by":"crossref","first-page":"3702","DOI":"10.1007\/s00330-018-5340-3","article-title":"Structured reporting adds clinical value in primary CT staging of diffuse large B-cell lymphoma","volume":"28","author":"Schoeppe","year":"2018","journal-title":"Eur Radiol"},{"issue":"1","key":"10.1016\/j.artmed.2024.102924_bb0085","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1055\/a-0636-3851","article-title":"Structured reporting in clinical routine","volume":"191","author":"Pinto Dos Santos","year":"2019","journal-title":"Rofo"},{"key":"10.1016\/j.artmed.2024.102924_bb0090","unstructured":"Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. Published online August 1, 2023. doi:10.48550\/arXiv.1706.03762."},{"key":"10.1016\/j.artmed.2024.102924_bb0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijmedinf.2022.104779","article-title":"Applications of natural language processing in radiology: a systematic review","volume":"163","author":"Linna","year":"2022","journal-title":"Int J Med Inform"},{"key":"10.1016\/j.artmed.2024.102924_bb0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1200\/CCI.18.00084","article-title":"Automating the capture of structured pathology data for prostate Cancer clinical care and research","volume":"3","author":"Odisho","year":"2019","journal-title":"JCO Clin Cancer Inform"},{"issue":"3","key":"10.1016\/j.artmed.2024.102924_bb0105","doi-asserted-by":"crossref","first-page":"922","DOI":"10.1016\/j.arth.2020.09.029","article-title":"Use of natural language processing algorithms to identify common data elements in operative notes for knee arthroplasty","volume":"36","author":"Sagheb","year":"2021","journal-title":"J Arthroplasty"},{"issue":"3","key":"10.1016\/j.artmed.2024.102924_bb0110","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1016\/j.jbi.2013.01.006","article-title":"An enhanced CRFs-based system for information extraction from radiology reports","volume":"46","author":"Esuli","year":"2013","journal-title":"J Biomed Inform"},{"key":"10.1016\/j.artmed.2024.102924_bb0115","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2019.103219","article-title":"Supervised methods to extract clinical events from cardiology reports in Italian","volume":"95","author":"Viani","year":"2019","journal-title":"J Biomed Inform"},{"key":"10.1016\/j.artmed.2024.102924_bb0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2024.102847","article-title":"Building large-scale registries from unstructured clinical notes using a low-resource natural language processing pipeline","volume":"151","author":"Tavabi","year":"2024","journal-title":"Artif Intell Med"},{"issue":"6","key":"10.1016\/j.artmed.2024.102924_bb0125","doi-asserted-by":"crossref","first-page":"4228","DOI":"10.1007\/s00330-023-09526-y","article-title":"Transformer-based structuring of free-text radiology report databases","volume":"33","author":"Nowak","year":"2023","journal-title":"Eur Radiol"},{"issue":"4","key":"10.1016\/j.artmed.2024.102924_bb0130","article-title":"RadBERT: adapting transformer-based language models to radiology. Radiology","volume":"4","author":"Yan","year":"2022","journal-title":"Artif Intell"},{"key":"10.1016\/j.artmed.2024.102924_bb0135","unstructured":"Putelli L, Gerevini AE, Lavelli A, Mehmood T, Serina I. On the Behaviour of BERT's Attention for the Classification of Medical Reports."},{"key":"10.1016\/j.artmed.2024.102924_bb0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.imu.2024.101465","article-title":"Fully automatic summarization of radiology reports using natural language processing with large language models","volume":"46","author":"Nishio","year":"2024","journal-title":"Informatics in Medicine Unlocked"},{"key":"10.1016\/j.artmed.2024.102924_bb0145","unstructured":"Mizuho Nishio, Hidetoshi Matsuo, Takaaki Matsunaga, et al. Zero-shot classification of TNM staging for Japanese radiology report using ChatGPT at RR-TNM subtask of NTCIR-17 MedNLP-SC. Published online December 12, 2023. doi:10.20736\/0002001283."},{"issue":"4","key":"10.1016\/j.artmed.2024.102924_bb0150","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1007\/s00234-024-03312-3","article-title":"Automatic generation of conclusions from neuroradiology MRI reports through natural language processing","volume":"66","author":"L\u00f3pez-\u00dabeda","year":"2024","journal-title":"Neuroradiology"},{"key":"10.1016\/j.artmed.2024.102924_bb0155","series-title":"Artificial Intelligence in Medicine","first-page":"153","article-title":"A rule-free approach for Cardiological registry filling from Italian clinical notes with question answering transformers","author":"Buonocore","year":"2023"},{"issue":"5","key":"10.1016\/j.artmed.2024.102924_bb0160","first-page":"360","article-title":"Understanding interobserver agreement: the kappa statistic","volume":"37","author":"Viera","year":"2005","journal-title":"Fam Med"},{"issue":"140","key":"10.1016\/j.artmed.2024.102924_bb0165","first-page":"1","article-title":"Exploring the limits of transfer learning with a unified text-to-text transformer","volume":"21","author":"Raffel","year":"2020","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.artmed.2024.102924_bb0170","unstructured":"Sarti G, Nissim M. IT5: large-scale text-to-text Pretraining for Italian language understanding and generation. Published online March 7, 2022. doi:10.48550\/arXiv.2203.03759."},{"key":"10.1016\/j.artmed.2024.102924_bb0175","first-page":"53","article-title":"Transformer models used for text-based question answering systems","author":"Nassiri","year":"2022","journal-title":"Applied Intelligence"},{"key":"10.1016\/j.artmed.2024.102924_bb0180","doi-asserted-by":"crossref","unstructured":"Croce D, Zelenanska A, Basili R. Neural Learning for Question Answering in Italian: XVIIth International Conference of the Italian Association for Artificial Intelligence, Trento, Italy, November 20\u201323, 2018, Proceedings. In: 2018:389\u2013402. doi:https:\/\/doi.org\/10.1007\/978-3-030-03840-3_29.","DOI":"10.1007\/978-3-030-03840-3_29"},{"key":"10.1016\/j.artmed.2024.102924_bb0185","series-title":"Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics","first-page":"523","article-title":"A Survey of Methods for Addressing Class Imbalance in Deep-Learning Based Natural Language Processing","author":"Henning","year":"2023"},{"key":"10.1016\/j.artmed.2024.102924_bb0190","unstructured":"De Cao N, Wu L, Popat K, et al. Multilingual autoregressive entity linking. Published online March 23, 2021. doi:10.48550\/arXiv.2103.12528."},{"key":"10.1016\/j.artmed.2024.102924_bb0195","article-title":"ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports","volume":"5","author":"Jeblick","year":"2023","journal-title":"Eur Radiol Published online October"},{"issue":"8","key":"10.1016\/j.artmed.2024.102924_bb0200","article-title":"Large language models in hematology case solving: a comparative study of ChatGPT-3.5, Google bard, and Microsoft Bing","volume":"15","author":"Kumari","year":"2023","journal-title":"Cureus"},{"issue":"1","key":"10.1016\/j.artmed.2024.102924_bb0205","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1007\/s10916-023-02021-3","article-title":"Evaluating the performance of different large language models on health consultation and patient education in urolithiasis","volume":"47","author":"Song","year":"2023","journal-title":"J Med Syst"},{"key":"10.1016\/j.artmed.2024.102924_bb0210","series-title":"ROUGE: A package for automatic evaluation of summaries","first-page":"74","author":"Lin","year":"2004"},{"author":"Zhang","key":"10.1016\/j.artmed.2024.102924_bb0215"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001660?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001660?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T10:44:14Z","timestamp":1722941054000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724001660"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":43,"alternative-id":["S0933365724001660"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102924","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Reshaping free-text radiology notes into structured reports with generative question answering transformers","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102924","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102924"}}