{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:36:29Z","timestamp":1726763789614},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,7,10]],"date-time":"2025-07-10T00:00:00Z","timestamp":1752105600000},"content-version":"am","delay-in-days":343,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100009633","name":"Eunice Kennedy Shriver National Institute of Child Health and Human Development","doi-asserted-by":"publisher","award":["R01HD092239","R01HD074819"],"id":[{"id":"10.13039\/100009633","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102921","type":"journal-article","created":{"date-parts":[[2024,6,25]],"date-time":"2024-06-25T16:49:19Z","timestamp":1719334159000},"page":"102921","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Towards a comprehensive bedside swallow screening protocol using cross-domain transformation and high-resolution cervical auscultation"],"prefix":"10.1016","volume":"154","author":[{"given":"Ayman","family":"Anwar","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8017-5959","authenticated-orcid":false,"given":"Yassin","family":"Khalifa","sequence":"additional","affiliation":[]},{"given":"Erin","family":"Lucatorto","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5627-5623","authenticated-orcid":false,"given":"James L.","family":"Coyle","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4987-8298","authenticated-orcid":false,"given":"Ervin","family":"Sejdic","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.artmed.2024.102921_b1","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1002\/ddrr.12","article-title":"The neurobiology of swallowing and dysphagia","volume":"14","author":"Miller","year":"2008","journal-title":"Dev Disabil Res Rev"},{"key":"10.1016\/j.artmed.2024.102921_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2022.102435","article-title":"Virtual disease landscape using mechanics-informed machine learning: Application to esophageal disorders","volume":"134","author":"Halder","year":"2022","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"issue":"8","key":"10.1016\/j.artmed.2024.102921_b3","doi-asserted-by":"crossref","first-page":"784","DOI":"10.1001\/archoto.2010.129","article-title":"Consequence of dysphagia in the hospitalized patient: impact on prognosis and hospital resources","volume":"136","author":"Altman","year":"2010","journal-title":"Arch Otolaryngol-Head Neck Surg"},{"issue":"3","key":"10.1016\/j.artmed.2024.102921_b4","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1513\/AnnalsATS.201606-455OC","article-title":"Recovery from dysphagia symptoms after oral endotracheal intubation in acute respiratory distress syndrome survivors. A 5-year longitudinal study","volume":"14","author":"Brodsky","year":"2017","journal-title":"Ann Am Thorac Soc"},{"key":"10.1016\/j.artmed.2024.102921_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102081","article-title":"Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques","volume":"117","author":"T\u0103u\u0163an","year":"2021","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"issue":"15","key":"10.1016\/j.artmed.2024.102921_b6","doi-asserted-by":"crossref","first-page":"2083","DOI":"10.1080\/09638288.2018.1552326","article-title":"Oropharyngeal dysphagia and laryngeal dysfunction after lung and heart transplantation: A systematic review","volume":"42","author":"Black","year":"2020","journal-title":"Disabil Rehabil"},{"issue":"10","key":"10.1016\/j.artmed.2024.102921_b7","doi-asserted-by":"crossref","DOI":"10.1097\/CCM.0b013e31829caf33","article-title":"ICU-acquired swallowing disorders","volume":"41","author":"Macht","year":"2013","journal-title":"Crit Care Med"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/dote\/dox131","article-title":"Economic and survival burden of dysphagia among inpatients in the United States","volume":"31","author":"Patel","year":"2018","journal-title":"Dis Esophagus"},{"issue":"12","key":"10.1016\/j.artmed.2024.102921_b9","doi-asserted-by":"crossref","first-page":"2756","DOI":"10.1161\/01.STR.0000190056.76543.eb","article-title":"Dysphagia after stroke: incidence, diagnosis, and pulmonary complications","volume":"36","author":"Martino","year":"2005","journal-title":"Stroke"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b10","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1007\/s00455-012-9418-9","article-title":"Noninvasive detection of thin-liquid aspiration using dual-axis swallowing accelerometry","volume":"28","author":"Steele","year":"2012","journal-title":"Dysphagia"},{"issue":"8","key":"10.1016\/j.artmed.2024.102921_b11","doi-asserted-by":"crossref","first-page":"1952","DOI":"10.1002\/lary.27070","article-title":"Silent aspiration: Who is at risk?","volume":"128","author":"Velayutham","year":"2017","journal-title":"Laryngoscope"},{"issue":"4","key":"10.1016\/j.artmed.2024.102921_b12","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1007\/s00455-002-0064-5","article-title":"Hyoid motion during swallowing: factors affecting forward and upward displacement","volume":"17","author":"Ishida","year":"2002","journal-title":"Dysphagia"},{"key":"10.1016\/j.artmed.2024.102921_b13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JTEHM.2018.2881468","article-title":"High-resolution cervical auscultation signal features reflect vertical and horizontal displacements of the hyoid bone during swallowing","volume":"7","author":"Rebrion","year":"2018","journal-title":"IEEE J Transl Eng Health Med"},{"issue":"9","key":"10.1016\/j.artmed.2024.102921_b14","doi-asserted-by":"crossref","first-page":"1810","DOI":"10.1109\/TNSRE.2019.2935302","article-title":"The association of high resolution cervical auscultation signal features with hyoid bone displacement during swallowing","volume":"27","author":"He","year":"2019","journal-title":"IEEE Trans Neural Syst Rehabil Eng"},{"issue":"9","key":"10.1016\/j.artmed.2024.102921_b15","doi-asserted-by":"crossref","first-page":"734","DOI":"10.1097\/PHM.0000000000000258","article-title":"Upper esophageal sphincter opening during swallow in stroke survivors","volume":"94","author":"Kim","year":"2015","journal-title":"Am J Phys Med Rehabil"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b16","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1007\/s00455-006-9031-x","article-title":"Radiation dose in videofluoroscopic swallow studies","volume":"22","author":"Zammit-Maempel","year":"2006","journal-title":"Dysphagia"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b17","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1109\/MSP.2018.2875863","article-title":"Computational deglutition: Using signal- and image-processing methods to understand swallowing and associated disorders [life sciences]","volume":"36","author":"Sejdic","year":"2019","journal-title":"IEEE Signal Process Mag"},{"key":"10.1016\/j.artmed.2024.102921_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.102006","article-title":"A deep-learning-based unsupervised model on esophageal manometry using variational autoencoder","volume":"112","author":"Kou","year":"2021","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b19","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.artmed.2011.03.002","article-title":"Classification of healthy and abnormal swallows based on accelerometry and nasal airflow signals","volume":"52","author":"Lee","year":"2011","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102921_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102233","article-title":"A multi-stage machine learning model for diagnosis of esophageal manometry","volume":"124","author":"Kou","year":"2022","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102921_b21","first-page":"1","article-title":"Autonomous swallow segment extraction using deep learning in neck-sensor vibratory signals from patients with dysphagia","author":"Khalifa","year":"2022","journal-title":"IEEE J Biomed Health Inf"},{"key":"10.1016\/j.artmed.2024.102921_b22","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.inffus.2020.11.008","article-title":"A review of hidden Markov models and recurrent neural networks for event detection and localization in biomedical signals","volume":"69","author":"Khalifa","year":"2021","journal-title":"Inf Fusion","ISSN":"http:\/\/id.crossref.org\/issn\/1566-2535","issn-type":"print"},{"issue":"2","key":"10.1016\/j.artmed.2024.102921_b23","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1109\/JBHI.2020.3000057","article-title":"Upper esophageal sphincter opening segmentation with convolutional recurrent neural networks in high resolution cervical auscultation","volume":"25","author":"Khalifa","year":"2021","journal-title":"IEEE J Biomed Health Inform"},{"issue":"3","key":"10.1016\/j.artmed.2024.102921_b24","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1088\/1361-6579\/abe7cb","article-title":"Anterior\u2013posterior distension of maximal upper esophageal sphincter opening is correlated with high-resolution cervical auscultation signal features","volume":"42","author":"Shu","year":"2021","journal-title":"Physiol Meas"},{"issue":"7","key":"10.1016\/j.artmed.2024.102921_b25","doi-asserted-by":"crossref","DOI":"10.1098\/rsos.181982","article-title":"Neck sensor-supported hyoid bone movement tracking during swallowing","volume":"6","author":"Mao","year":"2019","journal-title":"R Soc Open Sci"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b26","doi-asserted-by":"crossref","first-page":"P","DOI":"10.1038\/s41598-020-65492-1","article-title":"Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings","volume":"10","author":"Khalifa","year":"2020","journal-title":"Sci Rep"},{"key":"10.1016\/j.artmed.2024.102921_b27","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1007\/s00455-020-10177-0","article-title":"A preliminary investigation of whether HRCA signals can differentiate between swallows from healthy people and swallows from people with neurodegenerative diseases","volume":"36","author":"Donohue","year":"2021","journal-title":"Dysphagia"},{"key":"10.1016\/j.artmed.2024.102921_b28","doi-asserted-by":"crossref","first-page":"707","DOI":"10.1007\/s00455-020-10191-2","article-title":"How closely do machine ratings of duration of UES opening during videofluoroscopy approximate clinician ratings using temporal kinematic analyses and the MBSImP?","volume":"36","author":"Donohue","year":"2021","journal-title":"Dysphagia"},{"issue":"9","key":"10.1016\/j.artmed.2024.102921_b29","doi-asserted-by":"crossref","first-page":"3416","DOI":"10.1044\/2021_JSLHR-21-00134","article-title":"Characterizing swallows from people with neurodegenerative diseases using high-resolution cervical auscultation signals and temporal and spatial swallow kinematic measurements","volume":"64","author":"Donohue","year":"2021","journal-title":"J Speech Lang Hear Res"},{"key":"10.1016\/j.artmed.2024.102921_b30","first-page":"1","article-title":"Characterizing effortful swallows from healthy community dwelling adults across the lifespan using high-resolution cervical auscultation signals and MBSImP scores: A preliminary study","author":"Donohue","year":"2021","journal-title":"Dysphagia"},{"issue":"3","key":"10.1016\/j.artmed.2024.102921_b31","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1007\/s00455-021-10317-0","article-title":"Establishing reference values for temporal kinematic swallow events across the lifespan in healthy community dwelling adults using high-resolution cervical auscultation","volume":"37","author":"Donohue","year":"2022","journal-title":"Dysphagia"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b32","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1007\/s00455-013-9485-6","article-title":"Effects of barium concentration on oropharyngeal swallow timing measures","volume":"29","author":"Stokely","year":"2014","journal-title":"Dysphagia"},{"key":"10.1016\/j.artmed.2024.102921_b33","article-title":"A preliminary investigation of similarities of high resolution cervical auscultation signals between thin liquid barium and water swallows","volume":"10","author":"Schwartz","year":"2021","journal-title":"IEEE J Transl Eng Health Med"},{"year":"2017","series-title":"Unpaired image-to-image translation using cycle-consistent adversarial networks","author":"Zhu","key":"10.1016\/j.artmed.2024.102921_b34"},{"key":"10.1016\/j.artmed.2024.102921_b35","doi-asserted-by":"crossref","unstructured":"Zhang H, Liu X, Zheng K. Design of Broadband PLC Conformance Testing System Based on TTCN-3. In: 2018 international conference on information systems and computer aided education. ICISCAE, Changchun, China; 2018, p. 35\u201341. http:\/\/dx.doi.org\/10.1109\/ICISCAE.2018.8666862.","DOI":"10.1109\/ICISCAE.2018.8666862"},{"key":"10.1016\/j.artmed.2024.102921_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.101938","article-title":"GANs for medical image analysis","volume":"109","author":"Kazeminia","year":"2020","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102921_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2023.102489","article-title":"A novel temporal generative adversarial network for electrocardiography anomaly detection","volume":"136","author":"Qin","year":"2023","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102921_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2023.102507","article-title":"Clinical-GAN: Trajectory forecasting of clinical events using transformer and generative adversarial networks","volume":"138","author":"Shankar","year":"2023","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"year":"2017","series-title":"Attention is all you need","author":"Vaswani","key":"10.1016\/j.artmed.2024.102921_b39"},{"key":"10.1016\/j.artmed.2024.102921_b40","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2024.102788","article-title":"Scalable swin transformer network for brain tumor segmentation from incomplete MRI modalities","volume":"149","author":"Zhang","year":"2024","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102921_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2022.102236","article-title":"Enhancing dynamic ECG heartbeat classification with lightweight transformer model","volume":"124","author":"Meng","year":"2022","journal-title":"Artif Intell Med","ISSN":"http:\/\/id.crossref.org\/issn\/0933-3657","issn-type":"print"},{"issue":"4","key":"10.1016\/j.artmed.2024.102921_b42","doi-asserted-by":"crossref","first-page":"528","DOI":"10.1007\/s00455-013-9463-z","article-title":"Preliminary investigation of the effect of pulse rate on judgments of swallowing impairment and treatment recommendations","volume":"28","author":"Bonilha","year":"2013","journal-title":"Dysphagia"},{"issue":"3","key":"10.1016\/j.artmed.2024.102921_b43","article-title":"A comparative analysis of swallowing accelerometry and sounds during saliva swallows","volume":"14","author":"Dudik","year":"2015","journal-title":"Biomed Eng Online"},{"issue":"7","key":"10.1016\/j.artmed.2024.102921_b44","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1177\/000348940211100710","article-title":"Acoustic signature of the normal swallow: characterization by age, gender, and bolus volume","volume":"111","author":"Cichero","year":"2002","journal-title":"Ann Otol Rhinol Laryngol"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b45","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1186\/1475-925X-9-7","article-title":"Effects of liquid stimuli on dual-axis swallowing accelerometry signals in a healthy population","volume":"9","author":"Lee","year":"2010","journal-title":"BioMed Eng OnLine"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b46","doi-asserted-by":"crossref","DOI":"10.1186\/s12984-015-0110-9","article-title":"A statistical analysis of cervical auscultation signals from adults with unsafe airway protection","volume":"13","author":"Dudik","year":"2016","journal-title":"J NeuroEng Rehabil"},{"issue":"3","key":"10.1016\/j.artmed.2024.102921_b47","doi-asserted-by":"crossref","first-page":"1048","DOI":"10.1007\/s10439-009-9874-z","article-title":"Baseline characteristics of dual-axis cervical accelerometry signals","volume":"38","author":"Sejdi\u0107","year":"2010","journal-title":"Ann Biomed Eng"},{"issue":"10","key":"10.1016\/j.artmed.2024.102921_b48","doi-asserted-by":"crossref","first-page":"2456","DOI":"10.1109\/TBME.2015.2431999","article-title":"Characteristics of dry chin-tuck swallowing vibrations and sounds","volume":"62","author":"Dudik","year":"2015","journal-title":"IEEE Trans Biomed Eng"},{"issue":"3","key":"10.1016\/j.artmed.2024.102921_b49","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0033464","article-title":"A method for removal of low frequency components associated with head movements from dual-axis swallowing accelerometry signals","volume":"7","author":"Sejdi\u0107","year":"2012","journal-title":"PLoS ONE"},{"issue":"269","key":"10.1016\/j.artmed.2024.102921_b50","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1186\/1756-0500-3-269","article-title":"The effects of head movement on dual-axis cervical accelerometry signals","volume":"3","author":"Sejdi\u0107","year":"2010","journal-title":"BMC Res Notes"},{"issue":"1","key":"10.1016\/j.artmed.2024.102921_b51","doi-asserted-by":"crossref","first-page":"N1","DOI":"10.1088\/0967-3334\/31\/1\/N01","article-title":"A procedure for denoising dual-axis swallowing accelerometry signals","volume":"31","author":"Sejdi\u0107","year":"2010","journal-title":"Physiol Meas"},{"year":"2016","series-title":"Least squares generative adversarial networks","author":"Mao","key":"10.1016\/j.artmed.2024.102921_b52"},{"year":"2020","series-title":"A review on generative adversarial networks: Algorithms, theory, and applications","author":"Gui","key":"10.1016\/j.artmed.2024.102921_b53"},{"issue":"6","key":"10.1016\/j.artmed.2024.102921_b54","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1088\/0967-3334\/31\/6\/008","article-title":"Hyolaryngeal excursion as the physiological source of swallowing accelerometry signals","volume":"31","author":"Zoratto","year":"2010","journal-title":"Physiol Meas"},{"issue":"12","key":"10.1016\/j.artmed.2024.102921_b55","doi-asserted-by":"crossref","DOI":"10.1007\/s11864-018-0585-2","article-title":"Big data in head and neck cancer","volume":"19","author":"Resteghini","year":"2018","journal-title":"Curr Treat Options Oncol"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001635?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001635?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T10:44:15Z","timestamp":1722941055000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724001635"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":55,"alternative-id":["S0933365724001635"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102921","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Towards a comprehensive bedside swallow screening protocol using cross-domain transformation and high-resolution cervical auscultation","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102921","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102921"}}