{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T13:13:13Z","timestamp":1732281193270,"version":"3.28.0"},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006579","name":"Ministry of Industry and Information Technology of the People's Republic of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100006579","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102919","type":"journal-article","created":{"date-parts":[[2024,6,22]],"date-time":"2024-06-22T15:53:41Z","timestamp":1719071621000},"page":"102919","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images"],"prefix":"10.1016","volume":"154","author":[{"given":"Jiajia","family":"Li","sequence":"first","affiliation":[]},{"given":"Pingping","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xia","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Teng","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4601-0779","authenticated-orcid":false,"given":"Ping","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0281-8039","authenticated-orcid":false,"given":"Ruhan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Bin","family":"Sheng","sequence":"additional","affiliation":[]},{"given":"Kaixuan","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.artmed.2024.102919_b1","doi-asserted-by":"crossref","DOI":"10.1038\/s41467-021-27765-9","article-title":"Lipidomic profiling of human serum enables detection of pancreatic cancer","volume":"13","author":"Wolrab","year":"2022","journal-title":"Nature Commun"},{"key":"10.1016\/j.artmed.2024.102919_b2","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1038\/nrgastro.2012.193","article-title":"Pancreatic cancer: Image enhancement by endoscopic ultrasonography-elastography","volume":"9","author":"Fusaroli","year":"2012","journal-title":"Nat Rev Gastroenterol Hepatol"},{"key":"10.1016\/j.artmed.2024.102919_b3","doi-asserted-by":"crossref","first-page":"298","DOI":"10.1111\/den.13880","article-title":"Current status of artificial intelligence analysis for endoscopic ultrasonography","volume":"33","author":"Kuwahara","year":"2020","journal-title":"Dig Endosc"},{"key":"10.1016\/j.artmed.2024.102919_b4","doi-asserted-by":"crossref","unstructured":"Chen Chen, Bai Wenjia, Rueckert Daniel. Multi-task Learning for Left Atrial Segmentation on GE-MRI. In: MICCAI. 11395, 2018, p. 292\u2013301.","DOI":"10.1007\/978-3-030-12029-0_32"},{"key":"10.1016\/j.artmed.2024.102919_b5","series-title":"ISBI","first-page":"900","article-title":"Joint segmentation and fine-grained classification of nuclei in histopathology images","author":"Qu","year":"2019"},{"key":"10.1016\/j.artmed.2024.102919_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101918","article-title":"Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images","volume":"70","author":"Zhou","year":"2021","journal-title":"Med Imag Anal"},{"key":"10.1016\/j.artmed.2024.102919_b7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.14309\/ctg.0000000000000045","article-title":"Usefulness of deep learning analysis for the diagnosis of malignancy in intraductal papillary mucinous neoplasms of the pancreas","volume":"10","author":"Kuwahara","year":"2019","journal-title":"Clin Transl Gastroenterol"},{"issue":"4","key":"10.1016\/j.artmed.2024.102919_b8","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1016\/j.gie.2020.04.071","article-title":"Deep-learning-based pancreas segmentation and station recognition system in EUS: development and validation of a useful training tool (with video)","volume":"92","author":"Zhang","year":"2020","journal-title":"Gastrointest Endosc"},{"key":"10.1016\/j.artmed.2024.102919_b9","doi-asserted-by":"crossref","first-page":"101","DOI":"10.4103\/2303-9027.180473","article-title":"Age-based computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound images","volume":"5","author":"Ozkan","year":"2016","journal-title":"Endosc Ultrasound"},{"key":"10.1016\/j.artmed.2024.102919_b10","doi-asserted-by":"crossref","first-page":"1335","DOI":"10.1136\/gutjnl-2020-322821","article-title":"Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis","volume":"70","author":"Marya","year":"2020","journal-title":"Gut"},{"key":"10.1016\/j.artmed.2024.102919_b11","doi-asserted-by":"crossref","unstructured":"Kendall Alex, Gal Yarin, Cipolla Roberto. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. In: Proc. IEEE conf. comput. vis. pattern recognit.. 2018, p. 7482\u201391.","DOI":"10.1109\/CVPR.2018.00781"},{"key":"10.1016\/j.artmed.2024.102919_b12","unstructured":"Laine Samuli, Aila Timo. Temporal Ensembling for Semi-Supervised Learning. In: ICLR. 2017."},{"key":"10.1016\/j.artmed.2024.102919_b13","unstructured":"Tarvainen Antti, Valpola Harri. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: ICLR. 2017."},{"issue":"8","key":"10.1016\/j.artmed.2024.102919_b14","doi-asserted-by":"crossref","first-page":"1979","DOI":"10.1109\/TPAMI.2018.2858821","article-title":"Virtual adversarial training: A regularization method for supervised and semi-supervised learning","volume":"41","author":"Miyato","year":"2019","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.artmed.2024.102919_b15","unstructured":"Zhang Hongyi, Ciss\u00e9 Moustapha, Dauphin Yann N, Lopez-Paz David. mixup: Beyond Empirical Risk Minimization. In: ICLR. 2018."},{"key":"10.1016\/j.artmed.2024.102919_b16","unstructured":"Berthelot David, Carlini Nicholas, Goodfellow Ian J, Papernot Nicolas, Oliver Avital, Raffel Colin. MixMatch: A Holistic Approach to Semi-Supervised Learning. In: Proc. adv. neural inf. process. syst.. 2019, p. 5050\u201360."},{"key":"10.1016\/j.artmed.2024.102919_b17","unstructured":"Berthelot David, Carlini Nicholas, Cubuk Ekin D, Kurakin Alex, Sohn Kihyuk, Zhang Han, et al. ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring. In: ICLR. 2020."},{"issue":"3","key":"10.1016\/j.artmed.2024.102919_b18","doi-asserted-by":"crossref","first-page":"608","DOI":"10.1109\/TMI.2021.3117888","article-title":"Inconsistency-aware uncertainty estimation for semi-supervised medical image segmentation","volume":"41","author":"Shi","year":"2022","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.artmed.2024.102919_b19","doi-asserted-by":"crossref","unstructured":"Zhang Yizhe, Yang Lin, Chen Jianxu, Fredericksen Maridel, Hughes David P, Chen Danny Z. Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images. In: MICCAI, vol. 10435. 2017, p. 408\u201316.","DOI":"10.1007\/978-3-319-66179-7_47"},{"key":"10.1016\/j.artmed.2024.102919_b20","doi-asserted-by":"crossref","unstructured":"Chen Xiaokang, Yuan Yuhui, Zeng Gang, Wang Jingdong. Semi-Supervised Semantic Segmentation With Cross Pseudo Supervision. In: Proc. IEEE conf. comput. vis. pattern recognit.. 2021, p. 2613\u201322.","DOI":"10.1109\/CVPR46437.2021.00264"},{"key":"10.1016\/j.artmed.2024.102919_b21","doi-asserted-by":"crossref","unstructured":"Yu Lequan, Wang Shujun, Li Xiaomeng, Fu Chi-Wing, Heng Pheng-Ann. Uncertainty-Aware Self-ensembling Model for Semi-supervised 3D Left Atrium Segmentation. In: MICCAI, vol. 11765. 2019, p. 605\u201313.","DOI":"10.1007\/978-3-030-32245-8_67"},{"key":"10.1016\/j.artmed.2024.102919_b22","doi-asserted-by":"crossref","unstructured":"Li Shuailin, Zhang Chuyu, He Xuming. Shape-Aware Semi-supervised 3D Semantic Segmentation for Medical Images. In: MICCAI, vol. 12261. 2020, p. 552\u201361.","DOI":"10.1007\/978-3-030-59710-8_54"},{"key":"10.1016\/j.artmed.2024.102919_b23","doi-asserted-by":"crossref","unstructured":"Luo Xiangde, Chen Jieneng, Song Tao, Wang Guotai. Semi-supervised Medical Image Segmentation through Dual-task Consistency. In: AAAI conf. artif. intell.. 2021, p. 8801\u20139.","DOI":"10.1609\/aaai.v35i10.17066"},{"key":"10.1016\/j.artmed.2024.102919_b24","doi-asserted-by":"crossref","unstructured":"Imran Abdullah-Al-Zubaer, Terzopoulos Demetri. Semi-supervised Multi-task Learning with Chest X-Ray Images. In: MICCAI, vol. 11861. 2019, p. 151\u20139.","DOI":"10.1007\/978-3-030-32692-0_18"},{"issue":"3","key":"10.1016\/j.artmed.2024.102919_b25","doi-asserted-by":"crossref","first-page":"702","DOI":"10.1109\/TMI.2021.3123461","article-title":"Deep interpretable classification and weakly-supervised segmentation of histology images via max-min uncertainty","volume":"41","author":"Belharbi","year":"2022","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.artmed.2024.102919_b26","doi-asserted-by":"crossref","unstructured":"Doersch Carl, Gupta Abhinav, Efros Alexei A. Unsupervised Visual Representation Learning by Context Prediction. In: Proc. IEEE int. conf. comput. vis.. 2015, p. 1422\u201330.","DOI":"10.1109\/ICCV.2015.167"},{"key":"10.1016\/j.artmed.2024.102919_b27","unstructured":"Gidaris Spyros, Singh Praveer, Komodakis Nikos. Unsupervised Representation Learning by Predicting Image Rotations. In: Proc. int. conf. learn. represent.. 2018."},{"key":"10.1016\/j.artmed.2024.102919_b28","doi-asserted-by":"crossref","unstructured":"Pathak Deepak, Girshick Ross B, Doll\u00e1r Piotr, Darrell Trevor, Hariharan Bharath. Learning Features by Watching Objects Move. In: Proc. IEEE conf. comput. vis. pattern recognit.. 2017, p. 6024\u201333.","DOI":"10.1109\/CVPR.2017.638"},{"key":"10.1016\/j.artmed.2024.102919_b29","doi-asserted-by":"crossref","unstructured":"He Kaiming, Fan Haoqi, Wu Yuxin, Xie Saining, Girshick Ross B. Momentum Contrast for Unsupervised Visual Representation Learning. In: Proc. IEEE conf. comput. vis. pattern recognit.. 2020, p. 9726\u201335.","DOI":"10.1109\/CVPR42600.2020.00975"},{"year":"2021","series-title":"Masked autoencoders are scalable vision learners, CoRR abs\/2111.06377, 2021","author":"He","key":"10.1016\/j.artmed.2024.102919_b30"},{"key":"10.1016\/j.artmed.2024.102919_b31","unstructured":"Chaitanya Krishna, Erdil Ertunc, Karani Neerav, Konukoglu Ender. Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Proc. adv. neural inf. process. syst. (neurIPS). 2020."},{"year":"2020","series-title":"Contrastive learning of medical visual representations from paired images and text, CoRR abs\/2010.00747","author":"Zhang","key":"10.1016\/j.artmed.2024.102919_b32"},{"key":"10.1016\/j.artmed.2024.102919_b33","doi-asserted-by":"crossref","unstructured":"Tian Yu, Pang Guansong, Liu Fengbei, Liu Yuyuan, Wang Chong, Chen Yuanhong, Verjans Johan, Carneiro Gustavo. Contrastive Transformer-Based Multiple Instance Learning for Weakly Supervised Polyp Frame Detection. In: MICCAI, vol. 13433. 2022, p. 88\u201398.","DOI":"10.1007\/978-3-031-16437-8_9"},{"key":"10.1016\/j.artmed.2024.102919_b34","doi-asserted-by":"crossref","unstructured":"Hadsell Raia, Chopra Sumit, LeCun Yann. Dimensionality Reduction by Learning an Invariant Mapping. In: Proc. IEEE conf. comput. vis. pattern recognit.. 2006, p. 1735\u201342.","DOI":"10.1109\/CVPR.2006.100"},{"key":"10.1016\/j.artmed.2024.102919_b35","doi-asserted-by":"crossref","unstructured":"He Kaiming, Fan Haoqi, Wu Yuxin, Xie Saining, Girshick Ross B. Momentum Contrast for Unsupervised Visual Representation Learning. In: Proc. IEEE conf. comput. vis. pattern recognit.. 2020, p. 9726\u201335.","DOI":"10.1109\/CVPR42600.2020.00975"},{"key":"10.1016\/j.artmed.2024.102919_b36","doi-asserted-by":"crossref","unstructured":"Wu Zhirong, Xiong Yuanjun, Yu Stella X, Lin Dahua. Unsupervised Feature Learning via Non-Parametric Instance Discrimination. In: Proc. IEEE conf. comput. vis. pattern recognit.. 2018, p. 3733\u201342.","DOI":"10.1109\/CVPR.2018.00393"},{"key":"10.1016\/j.artmed.2024.102919_b37","doi-asserted-by":"crossref","unstructured":"Hu Jie, Shen Li, Albanie Samuel, Sun Gang, Wu Enhua. Squeeze-and-Excitation Networks. In: Proc. IEEE\/CVF conf. comput. vis. pattern recognit.. 2018, p. 7132\u201341.","DOI":"10.1109\/CVPR.2018.00745"},{"issue":"2","key":"10.1016\/j.artmed.2024.102919_b38","doi-asserted-by":"crossref","first-page":"699","DOI":"10.1109\/TMI.2020.3035253","article-title":"CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation","volume":"40","author":"Gu","year":"2021","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.artmed.2024.102919_b39","doi-asserted-by":"crossref","unstructured":"Lin Tsung-Yi, Goyal Priya, Girshick Ross B, He Kaiming, Doll\u00e1r Piotr. Focal Loss for Dense Object Detection. In: Proc. IEEE int. conf. comput. vis.. 2017, p. 2999\u20133007.","DOI":"10.1109\/ICCV.2017.324"},{"key":"10.1016\/j.artmed.2024.102919_b40","doi-asserted-by":"crossref","unstructured":"Wang Ting-Chun, Liu Ming-Yu, Zhu Jun-Yan, Tao Andrew, Kautz Jan, Catanzaro Bryan. High-Resolution Image Synthesis and Semantic Manipulation With Conditional GANs. In: Proc. IEEE conf. comput. vis. pattern recognit.. 2018, p. 8798\u2013807.","DOI":"10.1109\/CVPR.2018.00917"},{"key":"10.1016\/j.artmed.2024.102919_b41","doi-asserted-by":"crossref","unstructured":"Sun Yifan, Cheng Changmao, Zhang Yuhan, Zhang Chi, Zheng Liang, Wang Zhongdao, et al. Circle Loss: A Unified Perspective of Pair Similarity Optimization. In: Proc. IEEE conf. comput. vis. pattern recognit.. 2020, p. 6397\u2013406.","DOI":"10.1109\/CVPR42600.2020.00643"},{"issue":"4","key":"10.1016\/j.artmed.2024.102919_b42","doi-asserted-by":"crossref","first-page":"771","DOI":"10.1109\/TMI.2021.3123572","article-title":"Semi-supervised deep transfer learning for benign-malignant diagnosis of pulmonary nodules in chest CT images","volume":"41","author":"Shi","year":"2022","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.artmed.2024.102919_b43","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"van der Maaten","year":"2008","journal-title":"J Mach Learn Res"},{"key":"10.1016\/j.artmed.2024.102919_b44","unstructured":"Lee Dong-Hyun. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. In: Proc. workshop challenges represent. learn.. 2013, p. 1\u20136."},{"key":"10.1016\/j.artmed.2024.102919_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107269","article-title":"Deep co-training for semi-supervised image segmentation","volume":"107","author":"Peng","year":"2020","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.artmed.2024.102919_b46","unstructured":"Tarvainen Antti, Valpola Harri. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Proc. adv. neural inf. process. syst.. 2017, p. 1195\u2013204."},{"issue":"3","key":"10.1016\/j.artmed.2024.102919_b47","doi-asserted-by":"crossref","first-page":"608","DOI":"10.1109\/TMI.2021.3117888","article-title":"Inconsistency-aware uncertainty estimation for semi-supervised medical image segmentation","volume":"41","author":"Shi","year":"2022","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.artmed.2024.102919_b48","doi-asserted-by":"crossref","unstructured":"Selvaraju Ramprasaath R, Cogswell Michael, Das Abhishek, Vedantam Ramakrishna, Parikh Devi, Batra Dhruv. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: Proc. IEEE int. conf. comput. vis.. 2017, p. 618\u201326.","DOI":"10.1109\/ICCV.2017.74"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001611?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001611?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T12:52:27Z","timestamp":1732279947000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724001611"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":48,"alternative-id":["S0933365724001611"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102919","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102919","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102919"}}