{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T05:39:14Z","timestamp":1732253954435,"version":"3.28.0"},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,6,18]],"date-time":"2024-06-18T00:00:00Z","timestamp":1718668800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100015743","name":"Coal Services Health and Safety Trust","doi-asserted-by":"publisher","award":["20656"],"id":[{"id":"10.13039\/100015743","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000943","name":"Commonwealth Scientific and Industrial Research Organisation","doi-asserted-by":"publisher","award":["LR 22\/2016"],"id":[{"id":"10.13039\/501100000943","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102917","type":"journal-article","created":{"date-parts":[[2024,6,18]],"date-time":"2024-06-18T16:37:06Z","timestamp":1718728626000},"page":"102917","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["AMFP-net: Adaptive multi-scale feature pyramid network for diagnosis of pneumoconiosis from chest X-ray images"],"prefix":"10.1016","volume":"154","author":[{"given":"Md. Shariful","family":"Alam","sequence":"first","affiliation":[]},{"given":"Dadong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Arcot","family":"Sowmya","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9963","key":"10.1016\/j.artmed.2024.102917_bb0005","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/S0140-6736(14)61682-2","article-title":"Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the global burden of disease study 2013","volume":"385","author":"Abubakar","year":"2015","journal-title":"Lancet"},{"issue":"30","key":"10.1016\/j.artmed.2024.102917_bb0010","doi-asserted-by":"crossref","first-page":"819","DOI":"10.15585\/mmwr.mm6730a3","article-title":"Coal workers\u2019 pneumoconiosis\u2013attributable years of potential life lost to life expectancy and potential life lost before age 65 years\u2014United States, 1999\u20132016","volume":"67","author":"Mazurek","year":"2018","journal-title":"Morb Mortal Wkly Rep"},{"issue":"3","key":"10.1016\/j.artmed.2024.102917_bb0015","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1002\/ajim.22551","article-title":"Lung transplantation is increasingly common among patients with coal workers\u2019 pneumoconiosis","volume":"59","author":"Blackley","year":"2016","journal-title":"Am J Ind Med"},{"issue":"11","key":"10.1016\/j.artmed.2024.102917_bb0020","doi-asserted-by":"crossref","first-page":"6439","DOI":"10.3390\/ijerph19116439","article-title":"Computer-aided diagnosis of coal Workers\u2019 pneumoconiosis in chest X-ray radiographs using machine learning: a systematic literature review","volume":"19","author":"Devnath","year":"2022","journal-title":"Int J Environ Res Public Health"},{"year":"2019","series-title":"Development of automated diagnostic tools for pneumoconiosis detection from chest X-ray radiographs","author":"Arzhaeva","key":"10.1016\/j.artmed.2024.102917_bb0025"},{"issue":"6","key":"10.1016\/j.artmed.2024.102917_bb0030","doi-asserted-by":"crossref","first-page":"1740","DOI":"10.1378\/chest.114.6.1740","article-title":"Variability in the classification of radiographs using the 1980 international labor organization classification for Pneumoconioses","volume":"114","author":"Welch","year":"1998","journal-title":"Chest"},{"key":"10.1016\/j.artmed.2024.102917_bb0035","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1109\/TPAMI.1980.6592371","article-title":"Computer-aided recognition of small rounded pneumoconiosis opacities in chest X-rays","volume":"5","author":"Savol","year":"1980","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.artmed.2024.102917_bb0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12880-021-00723-z","article-title":"Pneumoconiosis computer aided diagnosis system based on X-rays and deep learning","volume":"21","author":"Yang","year":"2021","journal-title":"BMC Med Imaging"},{"issue":"1","key":"10.1016\/j.artmed.2024.102917_bb0045","first-page":"1","article-title":"A deep learning-based model for screening and staging pneumoconiosis","volume":"11","author":"Zhang","year":"2021","journal-title":"Sci Rep"},{"key":"10.1016\/j.artmed.2024.102917_bb0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102125","article-title":"Deep learning for chest X-ray analysis: a survey","volume":"72","author":"\u00c7all\u0131","year":"2021","journal-title":"Med Image Anal"},{"issue":"3","key":"10.1016\/j.artmed.2024.102917_bb0055","doi-asserted-by":"crossref","first-page":"1224","DOI":"10.3390\/su13031224","article-title":"A review of deep-learning-based medical image segmentation methods","volume":"13","author":"Liu","year":"2021","journal-title":"Sustainability"},{"issue":"7","key":"10.1016\/j.artmed.2024.102917_bb0060","first-page":"3523","article-title":"Image segmentation using deep learning: a survey","volume":"44","author":"Minaee","year":"2021","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"11","key":"10.1016\/j.artmed.2024.102917_bb0065","doi-asserted-by":"crossref","first-page":"937","DOI":"10.1049\/iet-ipr.2016.0526","article-title":"Lung field segmentation in chest radiographs: a historical review, current status, and expectations from deep learning","volume":"11","author":"Mittal","year":"2017","journal-title":"IET Image Processing"},{"key":"10.1016\/j.artmed.2024.102917_bb0070","doi-asserted-by":"crossref","unstructured":"O. Ronneberger, P. Fischer, and T. Brox, \"U-net: Convolutional networks for biomedical image segmentation.\" pp. 234\u2013241.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10.1016\/j.artmed.2024.102917_bb0075","unstructured":"T.-Y. Lin, P. Doll\u00e1r, R. Girshick, K. He, B. Hariharan, and S. Belongie, \"Feature pyramid networks for object detection.\" pp. 2117\u20132125."},{"issue":"8","key":"10.1016\/j.artmed.2024.102917_bb0080","doi-asserted-by":"crossref","first-page":"3731","DOI":"10.1109\/JBHI.2022.3227540","article-title":"A Multi-Scale Context Aware Attention Model for Medical Image Segmentation","volume":"27","author":"Alam","year":"2023","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.artmed.2024.102917_bb0085","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neunet.2022.02.020","article-title":"TSFD-net: tissue specific feature distillation network for nuclei segmentation and classification","volume":"151","author":"Ilyas","year":"2022","journal-title":"Neural Netw"},{"key":"10.1016\/j.artmed.2024.102917_bb0090","unstructured":"L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, \"Encoder-decoder with atrous separable convolution for semantic image segmentation.\" pp. 801\u2013818."},{"key":"10.1016\/j.artmed.2024.102917_bb0095","doi-asserted-by":"crossref","first-page":"3211","DOI":"10.1109\/TIP.2022.3166673","article-title":"Attention guided global enhancement and local refinement network for semantic segmentation","volume":"31","author":"Li","year":"2022","journal-title":"IEEE Trans Image Process"},{"key":"10.1016\/j.artmed.2024.102917_bb0100","doi-asserted-by":"crossref","first-page":"7419","DOI":"10.1109\/TIP.2022.3222904","article-title":"Deep bilateral filtering network for point-supervised semantic segmentation in remote sensing images","volume":"31","author":"Wu","year":"2022","journal-title":"IEEE Trans Image Process"},{"key":"10.1016\/j.artmed.2024.102917_bb0105","unstructured":"J. Hu, L. Shen, and G. Sun, \"Squeeze-and-excitation networks.\" pp. 7132\u20137141."},{"key":"10.1016\/j.artmed.2024.102917_bb0110","unstructured":"O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, and B. Kainz, \u201cAttention u-net: Learning where to look for the pancreas,\u201d arXiv preprint arXiv:1804.03999, 2018."},{"key":"10.1016\/j.artmed.2024.102917_bb0115","unstructured":"H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, \"Pyramid scene parsing network.\" pp. 2881\u20132890."},{"key":"10.1016\/j.artmed.2024.102917_bb0120","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1109\/TSMC.1974.5408519","article-title":"Computer diagnosis of pneumoconiosis","volume":"1","author":"Kruger","year":"1974","journal-title":"IEEE Trans Syst Man Cybern"},{"issue":"1","key":"10.1016\/j.artmed.2024.102917_bb0125","first-page":"13","article-title":"Computer-aided diagnosis for pneumoconiosis using neural network","volume":"7","author":"Kouda","year":"2001","journal-title":"International Journal of Biomedical Soft Computing and Human Sciences: the official journal of the Biomedical Fuzzy Systems Association"},{"key":"10.1016\/j.artmed.2024.102917_bb0130","doi-asserted-by":"crossref","unstructured":"L. Devnath, S. Luo, P. Summons, and D. Wang, \"Performance comparison of deep learning models for black lung detection on chest X-ray radiographs.\" pp. 150\u2013154.","DOI":"10.1145\/3378936.3378968"},{"issue":"18","key":"10.1016\/j.artmed.2024.102917_bb0135","doi-asserted-by":"crossref","first-page":"5342","DOI":"10.3390\/jcm11185342","article-title":"Deep ensemble learning for the automatic detection of pneumoconiosis in coal worker\u2019s chest X-ray radiography","volume":"11","author":"Devnath","year":"2022","journal-title":"J Clin Med"},{"key":"10.1016\/j.artmed.2024.102917_bb0140","doi-asserted-by":"crossref","unstructured":"C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, \"Rethinking the inception architecture for computer vision.\" pp. 2818\u20132826.","DOI":"10.1109\/CVPR.2016.308"},{"key":"10.1016\/j.artmed.2024.102917_bb0145","unstructured":"F. Chollet, \"Xception: Deep learning with depthwise separable convolutions.\" pp. 1251\u20131258."},{"key":"10.1016\/j.artmed.2024.102917_bb0150","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, and J. Sun, \"Identity mappings in deep residual networks.\" pp. 630\u2013645.","DOI":"10.1007\/978-3-319-46493-0_38"},{"key":"10.1016\/j.artmed.2024.102917_bb0155","unstructured":"G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, \"Densely connected convolutional networks.\" pp. 4700\u20134708."},{"issue":"5","key":"10.1016\/j.artmed.2024.102917_bb0160","doi-asserted-by":"crossref","first-page":"988","DOI":"10.1109\/72.788640","article-title":"An overview of statistical learning theory","volume":"10","author":"Vapnik","year":"1999","journal-title":"IEEE Trans Neural Netw"},{"issue":"1","key":"10.1016\/j.artmed.2024.102917_bb0165","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","article-title":"Nearest neighbor pattern classification","volume":"13","author":"Cover","year":"1967","journal-title":"IEEE transactions on information theory"},{"key":"10.1016\/j.artmed.2024.102917_bb0170","unstructured":"L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, \u201cRethinking atrous convolution for semantic image segmentation,\u201d arXiv preprint arXiv:1706.05587, 2017."},{"issue":"4","key":"10.1016\/j.artmed.2024.102917_bb0175","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"2","key":"10.1016\/j.artmed.2024.102917_bb0180","doi-asserted-by":"crossref","first-page":"652","DOI":"10.1109\/TPAMI.2019.2938758","article-title":"Res2net: a new multi-scale backbone architecture","volume":"43","author":"Gao","year":"2019","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"6","key":"10.1016\/j.artmed.2024.102917_bb0185","doi-asserted-by":"crossref","first-page":"1482","DOI":"10.1109\/TMI.2021.3140120","article-title":"FCP-net: a feature-compression-pyramid network guided by game-theoretic interactions for medical image segmentation","volume":"41","author":"Liu","year":"2022","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.artmed.2024.102917_bb0190","unstructured":"S. Ioffe, and C. Szegedy, \"Batch normalization: Accelerating deep network training by reducing internal covariate shift.\" pp. 448\u2013456."},{"key":"10.1016\/j.artmed.2024.102917_bb0195","article-title":"Searching for activation functions","author":"Ramachandran","year":"2017","journal-title":"arXiv preprint arXiv"},{"issue":"6","key":"10.1016\/j.artmed.2024.102917_bb0200","first-page":"475","article-title":"Two public chest X-ray datasets for computer-aided screening of pulmonary diseases","volume":"4","author":"Jaeger","year":"2014","journal-title":"Quant Imaging Med Surg"},{"key":"10.1016\/j.artmed.2024.102917_bb0205","doi-asserted-by":"crossref","unstructured":"J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi, K.-i. Komatsu, M. Matsui, H. Fujita, Y. Kodera, and K. Doi, \u201cDevelopment of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules,\u201d Am J Roentgenol, vol. 174, no. 1, pp. 71\u201374, 2000.","DOI":"10.2214\/ajr.174.1.1740071"},{"issue":"2","key":"10.1016\/j.artmed.2024.102917_bb0210","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1109\/42.836373","article-title":"New variants of a method of MRI scale standardization","volume":"19","author":"Ny\u00fal","year":"2000","journal-title":"IEEE Trans Med Imaging"},{"issue":"9","key":"10.1016\/j.artmed.2024.102917_bb0215","article-title":"Tensorflow: large-scale machine learning on heterogeneous distributed systems","volume":"39","author":"Girija","year":"2016","journal-title":"Software available from tensorflow org"},{"issue":"1","key":"10.1016\/j.artmed.2024.102917_bb0220","doi-asserted-by":"crossref","first-page":"5979","DOI":"10.1038\/s41598-022-09954-8","article-title":"On evaluation metrics for medical applications of artificial intelligence","volume":"12","author":"Hicks","year":"2022","journal-title":"Sci Rep"},{"key":"10.1016\/j.artmed.2024.102917_bb0225","doi-asserted-by":"crossref","unstructured":"H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang, \"Swin-unet: Unet-like pure transformer for medical image segmentation.\" pp. 205\u2013218.","DOI":"10.1007\/978-3-031-25066-8_9"},{"key":"10.1016\/j.artmed.2024.102917_bb0230","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1109\/RBME.2023.3297604","article-title":"Vision Transformers for Computational Histopathology","volume":"17","author":"Xu","year":"2024","journal-title":"IEEE Rev. Biomed. Eng."},{"year":"2008","series-title":"The concise encyclopedia of statistics","author":"Dodge","key":"10.1016\/j.artmed.2024.102917_bb0235"},{"issue":"1","key":"10.1016\/j.artmed.2024.102917_bb0240","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1111\/j.0963-7214.2004.01501008.x","article-title":"The new and improved two-sample t test","volume":"15","author":"Keselman","year":"2004","journal-title":"Psychol Sci"},{"key":"10.1016\/j.artmed.2024.102917_bb0245","unstructured":"K. Simonyan, and A. Zisserman, \u201cVery deep convolutional networks for large-scale image recognition,\u201d arXiv preprint arXiv:1409.1556, 2014."},{"key":"10.1016\/j.artmed.2024.102917_bb0250","unstructured":"A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, \u201cMobilenets: Efficient convolutional neural networks for mobile vision applications,\u201d arXiv preprint arXiv:1704.04861, 2017."},{"key":"10.1016\/j.artmed.2024.102917_bb0255","unstructured":"M. Tan, and Q. Le, \"Efficientnet: Rethinking model scaling for convolutional neural networks.\" pp. 6105\u20136114."},{"key":"10.1016\/j.artmed.2024.102917_bb0260","unstructured":"Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, \"Swin transformer: Hierarchical vision transformer using shifted windows.\" pp. 10012\u201310022."},{"key":"10.1016\/j.artmed.2024.102917_bb0265","unstructured":"J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, \"Imagenet: A large-scale hierarchical image database.\" pp. 248\u2013255."},{"issue":"11","key":"10.1016\/j.artmed.2024.102917_bb0270","article-title":"Visualizing data using t-SNE","volume":"9","author":"Van der Maaten","year":"2008","journal-title":"Journal of machine learning research"},{"key":"10.1016\/j.artmed.2024.102917_bb0275","doi-asserted-by":"crossref","unstructured":"R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, \"Grad-cam: Visual explanations from deep networks via gradient-based localization.\" pp. 618\u2013626.","DOI":"10.1109\/ICCV.2017.74"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001593?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001593?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T03:40:37Z","timestamp":1732246837000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724001593"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":55,"alternative-id":["S0933365724001593"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102917","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"AMFP-net: Adaptive multi-scale feature pyramid network for diagnosis of pneumoconiosis from chest X-ray images","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102917","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102917"}}