{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T00:36:59Z","timestamp":1722991019013},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,6,4]],"date-time":"2024-06-04T00:00:00Z","timestamp":1717459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100018693","name":"Horizon 2020","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100018693","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102903","type":"journal-article","created":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T19:27:37Z","timestamp":1718306857000},"page":"102903","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["TEE4EHR: Transformer event encoder for better representation learning in electronic health records"],"prefix":"10.1016","volume":"154","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9902-0233","authenticated-orcid":false,"given":"Hojjat","family":"Karami","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9536-4947","authenticated-orcid":false,"given":"David","family":"Atienza","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2341-4383","authenticated-orcid":false,"given":"Anisoara","family":"Ionescu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.artmed.2024.102903_b1","doi-asserted-by":"crossref","first-page":"584","DOI":"10.1016\/j.cmi.2019.09.009","article-title":"Machine learning for clinical decision support in infectious diseases: A narrative review of current applications","volume":"26","author":"Peiffer-Smadja","year":"2020","journal-title":"Clin Microbiol Infect","ISSN":"http:\/\/id.crossref.org\/issn\/1198-743X","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.smhl.2020.100178","article-title":"Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making","volume":"20","author":"Pourhomayoun","year":"2021","journal-title":"Smart Health","ISSN":"http:\/\/id.crossref.org\/issn\/2352-6483","issn-type":"print"},{"issue":"1","key":"10.1016\/j.artmed.2024.102903_b3","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v32i1.11902","article-title":"Context-Aware Symptom Checking for Disease Diagnosis Using Hierarchical Reinforcement Learning","volume":"32","author":"Kao","year":"2018","journal-title":"Proc AAAI Conf Artif Intell","ISSN":"http:\/\/id.crossref.org\/issn\/2374-3468","issn-type":"print"},{"issue":"1","key":"10.1016\/j.artmed.2024.102903_b4","doi-asserted-by":"crossref","first-page":"20","DOI":"10.3390\/diagnostics9010020","article-title":"Machine-learning-based laboratory developed test for the diagnosis of sepsis in high-risk patients","volume":"9","author":"Calvert","year":"2019","journal-title":"Diagnostics","ISSN":"http:\/\/id.crossref.org\/issn\/2075-4418","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b5","series-title":"Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining","isbn-type":"print","doi-asserted-by":"crossref","first-page":"1315","DOI":"10.1145\/3097983.3098109","article-title":"LEAP: learning to prescribe effective and safe treatment combinations for multimorbidity","author":"Zhang","year":"2017","ISBN":"http:\/\/id.crossref.org\/isbn\/9781450348874"},{"issue":"11_Supplement","key":"10.1016\/j.artmed.2024.102903_b6","doi-asserted-by":"crossref","first-page":"S137","DOI":"10.7326\/M19-0872","article-title":"Reporting and implementing interventions involving machine learning and artificial intelligence","volume":"172","author":"Bates","year":"2020","journal-title":"Ann Intern Med","ISSN":"http:\/\/id.crossref.org\/issn\/0003-4819","issn-type":"print"},{"issue":"8","key":"10.1016\/j.artmed.2024.102903_b7","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","article-title":"Representation learning: a review and new perspectives","volume":"35","author":"Bengio","year":"2013","journal-title":"IEEE Trans Pattern Anal Mach Intell","ISSN":"http:\/\/id.crossref.org\/issn\/1939-3539","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b8","first-page":"191","article-title":"A review of challenges and opportunities in machine learning for health","volume":"2020","author":"Ghassemi","year":"2020","journal-title":"AMIA Summits Transl Sci Proc","ISSN":"http:\/\/id.crossref.org\/issn\/2153-4063","issn-type":"print"},{"issue":"1","key":"10.1016\/j.artmed.2024.102903_b9","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1093\/bioinformatics\/btr597","article-title":"MissForest\u2014Non-parametric missing value imputation for mixed-type data","volume":"28","author":"Stekhoven","year":"2012","journal-title":"Bioinformatics","ISSN":"http:\/\/id.crossref.org\/issn\/1367-4803","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b10","first-page":"1","article-title":"Mice: multivariate imputation by chained equations in R","volume":"45","author":"van Buuren","year":"2011","journal-title":"J Stat Softw","ISSN":"http:\/\/id.crossref.org\/issn\/1548-7660","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b11","series-title":"2018 10th International conference on knowledge and systems engineering","first-page":"247","article-title":"Comparison of the most influential missing data imputation algorithms for healthcare","author":"Duy Le","year":"2018"},{"year":"2022","series-title":"Graph-guided network for irregularly sampled multivariate time series","author":"Zhang","key":"10.1016\/j.artmed.2024.102903_b12"},{"key":"10.1016\/j.artmed.2024.102903_b13","series-title":"Statistical analysis with missing data","isbn-type":"print","doi-asserted-by":"crossref","DOI":"10.1002\/9781119482260","author":"Little","year":"2019","ISBN":"http:\/\/id.crossref.org\/isbn\/9780470526798"},{"issue":"9","key":"10.1016\/j.artmed.2024.102903_b14","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.1007\/s00134-014-3406-5","article-title":"A data-driven approach to optimized medication dosing: A focus on heparin","volume":"40","author":"Ghassemi","year":"2014","journal-title":"Intens Care Med","ISSN":"http:\/\/id.crossref.org\/issn\/1432-1238","issn-type":"print"},{"year":"2022","series-title":"DCSF: deep convolutional set functions for classification of asynchronous time series","author":"Yalavarthi","key":"10.1016\/j.artmed.2024.102903_b15"},{"year":"2023","series-title":"Time-parameterized convolutional neural networks for irregularly sampled time series","author":"Kosma","key":"10.1016\/j.artmed.2024.102903_b16"},{"key":"10.1016\/j.artmed.2024.102903_b17","doi-asserted-by":"crossref","first-page":"896","DOI":"10.1016\/j.neucom.2020.08.069","article-title":"Attention based convolutional recurrent neural network for environmental sound classification","volume":"453","author":"Zhang","year":"2021","journal-title":"Neurocomputing","ISSN":"http:\/\/id.crossref.org\/issn\/0925-2312","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b18","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.neucom.2021.03.091","article-title":"A review on the attention mechanism of deep learning","volume":"452","author":"Niu","year":"2021","journal-title":"Neurocomputing","ISSN":"http:\/\/id.crossref.org\/issn\/0925-2312","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b19","isbn-type":"print","first-page":"191","article-title":"Hawkes processes for events in social media","volume":"vol. 17","author":"Rizoiu","year":"2017","ISBN":"http:\/\/id.crossref.org\/isbn\/9781970001075"},{"key":"10.1016\/j.artmed.2024.102903_b20","series-title":"Handbook of financial time series","isbn-type":"print","doi-asserted-by":"crossref","first-page":"953","DOI":"10.1007\/978-3-540-71297-8_41","article-title":"Modelling financial high frequency data using point processes","author":"Bauwens","year":"2009","ISBN":"http:\/\/id.crossref.org\/isbn\/9783540712978"},{"issue":"5","key":"10.1016\/j.artmed.2024.102903_b21","doi-asserted-by":"crossref","DOI":"10.1214\/10-AOS806","article-title":"Adaptive estimation for Hawkes processes; application to genome analysis","volume":"38","author":"Reynaud-Bouret","year":"2010","journal-title":"Ann Statist","ISSN":"http:\/\/id.crossref.org\/issn\/0090-5364","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b22","series-title":"Proceedings of the 34th international conference on machine learning","first-page":"60","article-title":"Learning from clinical judgments: semi-Markov-modulated marked hawkes processes for risk prognosis","author":"Alaa","year":"2017","ISSN":"http:\/\/id.crossref.org\/issn\/2640-3498","issn-type":"print"},{"year":"2021","series-title":"Neural temporal point processes: a review","author":"Shchur","key":"10.1016\/j.artmed.2024.102903_b23"},{"issue":"1","key":"10.1016\/j.artmed.2024.102903_b24","doi-asserted-by":"crossref","first-page":"6085","DOI":"10.1038\/s41598-018-24271-9","article-title":"Recurrent neural networks for multivariate time series with missing values","volume":"8","author":"Che","year":"2018","journal-title":"Sci Rep","ISSN":"http:\/\/id.crossref.org\/issn\/2045-2322","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b25","series-title":"Proceedings of the 37th international conference on machine learning","first-page":"11183","article-title":"Self-attentive hawkes process","author":"Zhang","year":"2020","ISSN":"http:\/\/id.crossref.org\/issn\/2640-3498","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b26","series-title":"Proceedings of the 37th international conference on machine learning","first-page":"11692","article-title":"Transformer hawkes process","author":"Zuo","year":"2020","ISSN":"http:\/\/id.crossref.org\/issn\/2640-3498","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b27","series-title":"2023 IEEE eMBS international conference on biomedical and health informatics","first-page":"1","article-title":"Point-process-based representation learning for electronic health records","author":"Karami","year":"2023","ISSN":"http:\/\/id.crossref.org\/issn\/2641-3604","issn-type":"print"},{"issue":"1","key":"10.1016\/j.artmed.2024.102903_b28","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1093\/biomet\/58.1.83","article-title":"Spectra of some self-exciting and mutually exciting point processes","volume":"58","author":"Hawkes","year":"1971","journal-title":"Biometrika","ISSN":"http:\/\/id.crossref.org\/issn\/0006-3444","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b29","series-title":"Proceedings of the 33rd international conference on machine learning","first-page":"1717","article-title":"Learning granger causality for hawkes processes","author":"Xu","year":"2016"},{"key":"10.1016\/j.artmed.2024.102903_b30","series-title":"Proceedings of the 27th international joint conference on artificial intelligence","isbn-type":"print","doi-asserted-by":"crossref","first-page":"2948","DOI":"10.24963\/ijcai.2018\/409","article-title":"Improving maximum likelihood estimation of temporal point process via discriminative and adversarial learning","author":"Yan","year":"2018","ISBN":"http:\/\/id.crossref.org\/isbn\/9780999241127"},{"year":"2018","series-title":"Deep reinforcement learning of marked temporal point processes","author":"Upadhyay","key":"10.1016\/j.artmed.2024.102903_b31"},{"year":"2017","series-title":"Deep reinforcement learning for sepsis treatment","author":"Raghu","key":"10.1016\/j.artmed.2024.102903_b32"},{"key":"10.1016\/j.artmed.2024.102903_b33","series-title":"Proceedings of the machine learning for health neurIPS workshop","first-page":"85","article-title":"Neural temporal point processes for modelling electronic health records","author":"Enguehard","year":"2020","ISSN":"http:\/\/id.crossref.org\/issn\/2640-3498","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b34","unstructured":"Shukla SN, Marlin B. Multi-Time Attention Networks for Irregularly Sampled Time Series. In: International conference on learning representations. 2020."},{"key":"10.1016\/j.artmed.2024.102903_b35","series-title":"Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining","isbn-type":"print","doi-asserted-by":"crossref","first-page":"1555","DOI":"10.1145\/2939672.2939875","article-title":"Recurrent marked temporal point processes: embedding event history to vector","author":"Du","year":"2016","ISBN":"http:\/\/id.crossref.org\/isbn\/9781450342322"},{"key":"10.1016\/j.artmed.2024.102903_b36","article-title":"The neural hawkes process: a neurally self-modulating multivariate point process","volume":"vol. 30","author":"Mei","year":"2017"},{"key":"10.1016\/j.artmed.2024.102903_b37","article-title":"Attention is all you need","volume":"vol. 30","author":"Vaswani","year":"2017"},{"year":"2017","series-title":"RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism","author":"Choi","key":"10.1016\/j.artmed.2024.102903_b38"},{"key":"10.1016\/j.artmed.2024.102903_b39","series-title":"Proceedings of the 37th international conference on machine learning","first-page":"4353","article-title":"Set functions for time series","author":"Horn","year":"2020","ISSN":"http:\/\/id.crossref.org\/issn\/2640-3498","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b40","article-title":"Deep sets","volume":"vol. 30","author":"Zaheer","year":"2017"},{"year":"2020","series-title":"Gaussian error linear units (GELUs)","author":"Hendrycks","key":"10.1016\/j.artmed.2024.102903_b41"},{"issue":"3","key":"10.1016\/j.artmed.2024.102903_b42","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1093\/jamia\/ocx079","article-title":"Synthea: An approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record","volume":"25","author":"Walonoski","year":"2018","journal-title":"J Am Med Inf Assoc","ISSN":"http:\/\/id.crossref.org\/issn\/1527-974X","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b43","doi-asserted-by":"crossref","first-page":"E215","DOI":"10.1161\/01.CIR.101.23.e215","article-title":"PhysioBank, PhysioToolkit, and PhysioNet : components of a new research resource for complex physiologic signals","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"},{"key":"10.1016\/j.artmed.2024.102903_b44","first-page":"245","article-title":"Predicting in-hospital mortality of ICU patients: The PhysioNet\/Computing in cardiology challenge 2012","volume":"39","author":"Silva","year":"2012","journal-title":"Comput Cardiol"},{"issue":"2","key":"10.1016\/j.artmed.2024.102903_b45","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1097\/CCM.0000000000004145","article-title":"Early prediction of sepsis from clinical data: the PhysioNet\/Computing in cardiology challenge 2019","volume":"48","author":"Reyna","year":"2020","journal-title":"Critical Care Med","ISSN":"http:\/\/id.crossref.org\/issn\/0090-3493","issn-type":"print"},{"key":"10.1016\/j.artmed.2024.102903_b46","series-title":"Proceedings of the web conference 2021","isbn-type":"print","doi-asserted-by":"crossref","first-page":"1495","DOI":"10.1145\/3442381.3450135","article-title":"Learning neural point processes with latent graphs","author":"Zhang","year":"2021","ISBN":"http:\/\/id.crossref.org\/isbn\/9781450383127"},{"year":"2019","series-title":"Interpolation-prediction networks for irregularly sampled time series","author":"Shukla","key":"10.1016\/j.artmed.2024.102903_b47"},{"issue":"86","key":"10.1016\/j.artmed.2024.102903_b48","first-page":"2579","article-title":"Visualizing data using T-SNE","volume":"9","author":"van der Maaten","year":"2008","journal-title":"J Mach Learn Res","ISSN":"http:\/\/id.crossref.org\/issn\/1533-7928","issn-type":"print"},{"year":"2020","series-title":"What do position embeddings learn? an empirical study of pre-trained language model positional encoding","author":"Wang","key":"10.1016\/j.artmed.2024.102903_b49"},{"key":"10.1016\/j.artmed.2024.102903_b50","series-title":"Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining","isbn-type":"print","doi-asserted-by":"crossref","first-page":"2114","DOI":"10.1145\/3447548.3467401","article-title":"A transformer-based framework for multivariate time series representation learning","author":"Zerveas","year":"2021","ISBN":"http:\/\/id.crossref.org\/isbn\/9781450383325"},{"key":"10.1016\/j.artmed.2024.102903_b51","series-title":"2022 IEEE 24th int conf on high performance computing & communications; 8th int conf on data science & systems; 20th int conf on smart city; 8th int conf on dependability in sensor, cloud & big data systems & application (HPCC\/DSS\/smartCity\/dependSys)","first-page":"2110","article-title":"Multivariate time series imputation based on masked autoencoding with transformer","author":"Wang","year":"2022"},{"issue":"1","key":"10.1016\/j.artmed.2024.102903_b52","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1097\/EDE.0000000000000393","article-title":"Learning about missing data mechanisms in electronic health records-based research: A survey-based approach","volume":"27","author":"Haneuse","year":"2016","journal-title":"Epidemiol (Cambridge, Mass.)","ISSN":"http:\/\/id.crossref.org\/issn\/1044-3983","issn-type":"print"},{"year":"2017","series-title":"Adam: a method for stochastic optimization","author":"Kingma","key":"10.1016\/j.artmed.2024.102903_b53"},{"year":"2017","series-title":"SGDR: stochastic gradient descent with warm restarts","author":"Loshchilov","key":"10.1016\/j.artmed.2024.102903_b54"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001453?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001453?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T10:42:13Z","timestamp":1722940933000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724001453"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":54,"alternative-id":["S0933365724001453"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102903","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"TEE4EHR: Transformer event encoder for better representation learning in electronic health records","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102903","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102903"}}