{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T00:36:06Z","timestamp":1722990966870},"reference-count":127,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102902","type":"journal-article","created":{"date-parts":[[2024,6,5]],"date-time":"2024-06-05T10:42:12Z","timestamp":1717584132000},"page":"102902","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A comprehensive survey on the use of deep learning techniques in glioblastoma"],"prefix":"10.1016","volume":"154","author":[{"given":"Ichraq","family":"El Hachimy","sequence":"first","affiliation":[]},{"given":"Douae","family":"Kabelma","sequence":"additional","affiliation":[]},{"given":"Chaimae","family":"Echcharef","sequence":"additional","affiliation":[]},{"given":"Mohamed","family":"Hassani","sequence":"additional","affiliation":[]},{"given":"Nabil","family":"Benamar","sequence":"additional","affiliation":[]},{"given":"Nabil","family":"Hajji","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.artmed.2024.102902_bb0005","first-page":"764","article-title":"The definition of primary and sec- ondary glioblastoma","volume":"19","author":"Ohgaki","year":"2013","journal-title":"In: Clinical cancer research"},{"issue":"1","key":"10.1016\/j.artmed.2024.102902_bb0010","doi-asserted-by":"crossref","first-page":"L6","DOI":"10.3847\/2041-8205\/826\/1\/L6","article-title":"Fermi GBM observations of LIGO gravitational- wave event GW150914","volume":"826","author":"Connaughton","year":"2016","journal-title":"The Astrophysical Journal Letters"},{"issue":"10","key":"10.1016\/j.artmed.2024.102902_bb0015","first-page":"2412","article-title":"Epidemiology of glioblastoma multiforme\u2013 literature review","volume":"14","author":"Grochans","year":"2022","journal-title":"In: Cancers"},{"issue":"14","key":"10.1016\/j.artmed.2024.102902_bb0020","first-page":"3394","article-title":"Liquid biopsy in glioblastoma","volume":"14","author":"Ronvaux","year":"2022","journal-title":"In: Cancers"},{"key":"10.1016\/j.artmed.2024.102902_bb0025","article-title":"Multi-omics data integration, inter- pretation, and its application","volume":"14","author":"Subramanian","year":"2020","journal-title":"In: Bioinformatics and biology insights"},{"issue":"4","key":"10.1016\/j.artmed.2024.102902_bb0030","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1634\/theoncologist.2013-0345","article-title":"Low-grade gliomas","volume":"19","author":"Forst","year":"2014","journal-title":"Oncologist"},{"key":"10.1016\/j.artmed.2024.102902_bb0035","doi-asserted-by":"crossref","unstructured":"Evi J. van Kempen et al. \u201cPerformance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis\u201d. In: Eur Radiol (2021). doi:https:\/\/doi.org\/10.1007\/s00330-021-08035-0.","DOI":"10.1007\/s00330-021-08035-0"},{"key":"10.1016\/j.artmed.2024.102902_bb0040","article-title":"Machine learning and glioma imaging biomarkers","author":"Booth","year":"2019","journal-title":"Clin Radiol"},{"key":"10.1016\/j.artmed.2024.102902_bb0045","doi-asserted-by":"crossref","unstructured":"Andronicus A. Akinyely et al. \u201cBrain tumor diagnosis using machine learning, convolutional neural networks, capsule neural networks and vision transformers, applied to MRI: A survey\u201d. In: Journal of Imaging (2022). doi:https:\/\/doi.org\/10.3390\/jimaging8080205.","DOI":"10.3390\/jimaging8080205"},{"key":"10.1016\/j.artmed.2024.102902_bb0050","series-title":"Complex Intelligent Systems","article-title":"Brain tumor detection and classification using machine learning: A comprehensive survey","author":"Javaria","year":"2022"},{"key":"10.1016\/j.artmed.2024.102902_bb0055","doi-asserted-by":"crossref","unstructured":"Muhammad Waqas Nadeem et al. \u201cBrain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges\u201d. In: Brain Sciences (2020). doi:https:\/\/doi.org\/10.3390\/brainsci10020118.","DOI":"10.3390\/brainsci10020118"},{"key":"10.1016\/j.artmed.2024.102902_bb0060","article-title":"Machine learning applications for differentiation of glioma from brain metastasis\u2014a systematic review","author":"Jekel","year":"2022","journal-title":"In: cancers"},{"key":"10.1016\/j.artmed.2024.102902_bb0065","doi-asserted-by":"crossref","unstructured":"Amin Zadeh Shirazi et al. \u201cThe Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey\u201d. In: Journal of Personalized Medicine (2020). doi:https:\/\/doi.org\/10.3390\/jpm10040224.","DOI":"10.3390\/jpm10040224"},{"year":"2020","series-title":"Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey","author":"Khan","key":"10.1016\/j.artmed.2024.102902_bb0070"},{"year":"2019","series-title":"Deep learning for brain tumor Segmen- tation: A survey of state-of-the-art","author":"Magadza","key":"10.1016\/j.artmed.2024.102902_bb0075"},{"issue":"2","key":"10.1016\/j.artmed.2024.102902_bb0080","first-page":"19","article-title":"Deep learning for brain tu- mor segmentation: a survey of state-of-the-art","volume":"7","author":"Magadza","year":"2021","journal-title":"In: Journal of Imaging"},{"issue":"1","key":"10.1016\/j.artmed.2024.102902_bb0085","first-page":"111","article-title":"A review on a deep learning perspective in brain cancer classification","volume":"11","author":"Tandel","year":"2019","journal-title":"In: Cancers"},{"key":"10.1016\/j.artmed.2024.102902_bb0090","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.procs.2016.09.407","article-title":"Review of MRI-based brain tumor image segmentation using deep learning methods","volume":"102","author":"I\u015f\u0131n","year":"2016","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.artmed.2024.102902_bb0095","doi-asserted-by":"crossref","unstructured":"Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. \u201cCancer statistics, 2018\u201d. In: CA: a cancer journal for clinicians 68.1 (2018), pp. 7\u201330.","DOI":"10.3322\/caac.21442"},{"issue":"8","key":"10.1016\/j.artmed.2024.102902_bb0100","first-page":"2726","article-title":"Determination of intra-axial brain tu- mors cellularity through the analysis of T2 relaxation time of brain tumors before surgery using MATLAB software","volume":"8","author":"Abdolmohammadi","year":"2016","journal-title":"In: Electronic physi- cian"},{"issue":"3","key":"10.1016\/j.artmed.2024.102902_bb0105","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1093\/neuros\/nyx103","article-title":"Cur- rent clinical brain tumor imaging","volume":"81","author":"Villanueva-Meyer","year":"2017","journal-title":"Neurosurgery"},{"key":"10.1016\/j.artmed.2024.102902_bb0110","doi-asserted-by":"crossref","unstructured":"Andronicus A Akinyelu et al. \u201cBrain Tumor Diagnosis Using Machine Learning, Convolutional Neural Networks, Capsule Neural Networks and Vision Transformers, Applied to MRI: A Survey\u201d. In: Journal of Imaging 8.8 (2022), p. 205.","DOI":"10.3390\/jimaging8080205"},{"key":"10.1016\/j.artmed.2024.102902_bb0115","doi-asserted-by":"crossref","first-page":"55135","DOI":"10.1109\/ACCESS.2020.2978629","article-title":"A deep learning model based on concatenation approach for the diagnosis of brain tumor","volume":"8","author":"Noreen","year":"2020","journal-title":"IEEE Access"},{"issue":"3","key":"10.1016\/j.artmed.2024.102902_bb0120","first-page":"3967","article-title":"Brain tumor classification based on fine-tuned models and the ensemble method","volume":"67","author":"Noreen","year":"2021","journal-title":"In: Computers, Materials & Con- tinua"},{"year":"2021","series-title":"A review of newly diagnosed glioblastoma","author":"Oronsky","key":"10.1016\/j.artmed.2024.102902_bb0125"},{"issue":"5","key":"10.1016\/j.artmed.2024.102902_bb0130","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1056\/NEJMra0708126","article-title":"Malignant gliomas in adults","volume":"359","author":"Wen","year":"2008","journal-title":"New England Journal of Medicine"},{"issue":"3","key":"10.1016\/j.artmed.2024.102902_bb0135","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1093\/jnen\/61.3.215","article-title":"The WHO classification of tumors of the nervous system","volume":"61","author":"Kleihues","year":"2002","journal-title":"Journal of Neuropathology & Experimental Neurology"},{"key":"10.1016\/j.artmed.2024.102902_bb0140","doi-asserted-by":"crossref","unstructured":"The new ENGLAND Journal of Medicine. Brain tumors. https:\/\/www.nejm.org\/ doi\/full\/https:\/\/doi.org\/10.1056\/NEJM200101113440207. [Ac- cessed March 2023].","DOI":"10.1056\/NEJM200101113440207"},{"key":"10.1016\/j.artmed.2024.102902_bb0145","article-title":"Glioblastoma Multiforme: a review of its epi- demiology and pathogenesis through clinical presentation and treat- ment","author":"Hanif","year":"2017","journal-title":"Asian Pac J Cancer Prev"},{"key":"10.1016\/j.artmed.2024.102902_bb0150","unstructured":"National cancer Institute. Adult Central Nervous System Tumors Treat- ment (PDQ\u00ae)\u2013Patient Version. https:\/\/www.cancer.gov\/types\/brain\/patient\/adult-brain-treatment - pdq. [Accessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0155","doi-asserted-by":"crossref","unstructured":"Karl Herholz et al. \u201cBrain tumors\u201d. In: Seminars in nuclear medicine. Vol. 42. 6. Elsevier. 2012, pp. 356\u2013370.","DOI":"10.1053\/j.semnuclmed.2012.06.001"},{"key":"10.1016\/j.artmed.2024.102902_bb0160","unstructured":"Cancer Research UK. Gliomas. https:\/\/www.cancerresearchuk.org\/about-cancer\/brain-tumours\/types\/glioma-adults. [Ac- cessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0165","unstructured":"Cancer Research UK. Astrocytoma and glioblastoma (GBM). https:\/\/www.cancer- researchuk.org\/about- cancer\/brain- tumours\/types\/astrocytoma-glioblastoma-multiforme. [Accessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0170","unstructured":"Cancer Resarch UK. Oligodendroglioma. https:\/\/www.cancerresearchuk.org\/about-cancer\/brain-tumours\/types\/oligodendroglioma. [Accessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0175","unstructured":"Cancer reasearch UK. Astrocytoma and glioblastoma (GBM). https:\/\/www.cancer- researchuk.org\/about- cancer\/brain- tumours\/types\/astrocytoma-glioblastoma-multiforme. [Accessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0180","unstructured":"The. Diffuse glioma growth. https:\/\/www.ncbi.nlm.nih.gov\/pmc\/articles\/ PMC2039798\/.[Accessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0185","article-title":"Glioblastoma multiforme (GBM): an overview of cur- rent therapies and mechanisms of resistances","volume":"171","author":"Wei","year":"2021","journal-title":"Pharmacol Res"},{"key":"10.1016\/j.artmed.2024.102902_bb0190","doi-asserted-by":"crossref","unstructured":"Szymon Grochans et al. \u201cEpidemiology of Glioblastoma Multiforme\u2013Literature Review\u201d. In: Cancers 14 (2022). doi:https:\/\/doi.org\/10.3390\/cancers14102412.","DOI":"10.3390\/cancers14102412"},{"key":"10.1016\/j.artmed.2024.102902_bb0195","article-title":"Advanced imaging techniques for differentiating pseudo- progression and tumor recurrence after immunotherapy for glioblas- Toma","volume":"12","author":"Li","year":"2021","journal-title":"Front Immunol"},{"issue":"2","key":"10.1016\/j.artmed.2024.102902_bb0200","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1177\/107327480301000203","article-title":"Intraoperative magnetic res- onance imaging: impact on brain tumor surgery","volume":"10","author":"Schulder","year":"2003","journal-title":"Cancer Control"},{"issue":"2","key":"10.1016\/j.artmed.2024.102902_bb0205","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.jpedsurg.2020.10.013","article-title":"Evolving applications of fluorescence guided surgery in pediatric surgical oncology: a practical guide for surgeons","volume":"56","author":"Goldstein","year":"2021","journal-title":"J Pediatr Surg"},{"issue":"6","key":"10.1016\/j.artmed.2024.102902_bb0210","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3892\/ijo.2022.5359","article-title":"Signaling pathways and therapeutic approaches in glioblastoma multiforme","volume":"60","author":"Khabibov","year":"2022","journal-title":"Int J Oncol"},{"key":"10.1016\/j.artmed.2024.102902_bb0215","article-title":"Metabolic drivers of invasion in glioblastoma","volume":"9","author":"Garcia","year":"2021","journal-title":"In: Frontiers in cell and developmental biology"},{"key":"10.1016\/j.artmed.2024.102902_bb0220","series-title":"Pattern recognition and machine learning","volume":"vol. 4.4","author":"Bishop","year":"2006"},{"key":"10.1016\/j.artmed.2024.102902_bb0225","doi-asserted-by":"crossref","unstructured":"Anjum Nazir and Rizwan Ahmed Khan. \u201cNetwork intrusion detec- tion: Taxonomy and machine learning applications\u201d. In: Machine in- telligence and big data analytics for cybersecurity applications (2021), pp. 3\u201328.","DOI":"10.1007\/978-3-030-57024-8_1"},{"issue":"2","key":"10.1016\/j.artmed.2024.102902_bb0230","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1080\/13645706.2019.1575882","article-title":"Introduction to artificial intelligence in medicine","volume":"28","author":"Mintz","year":"2019","journal-title":"Minim Invasive Ther Allied Technol"},{"key":"10.1016\/j.artmed.2024.102902_bb0235","doi-asserted-by":"crossref","first-page":"S36","DOI":"10.1016\/j.metabol.2017.01.011","article-title":"Artificial intelligence in medicine","volume":"69","author":"Hamet","year":"2017","journal-title":"Metabolism"},{"issue":"4","key":"10.1016\/j.artmed.2024.102902_bb0240","first-page":"49","article-title":"Chapter 4. Robot companions and ethics: a prag- matic approach of ethical design","volume":"24","author":"G\u00e9rard Cornet**.","year":"2013","journal-title":"In: Journal international de bio\u00e9thique"},{"issue":"2","key":"10.1016\/j.artmed.2024.102902_bb0245","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1016\/j.jamcollsurg.2013.11.006","article-title":"Appli- cation of surgical safety standards to robotic surgery: five principles of ethics for nonmaleficence","volume":"218","author":"Larson","year":"2014","journal-title":"J Am Coll Surg"},{"issue":"1","key":"10.1016\/j.artmed.2024.102902_bb0250","first-page":"63","article-title":"Negotiation as a metaphor for distributed problem solving","volume":"20","author":"Davis","year":"1983","journal-title":"In: Artificial intelligence"},{"key":"10.1016\/j.artmed.2024.102902_bb0255","doi-asserted-by":"crossref","unstructured":"T Venkat Narayana Rao et al. \u201cReliance on artificial intelligence, ma- chine learning and deep learning in the era of industry 4.0\u201d. In: Smart healthcare system design: security and privacy aspects (2022), pp. 281\u2013299.","DOI":"10.1002\/9781119792253.ch12"},{"issue":"2","key":"10.1016\/j.artmed.2024.102902_bb0260","first-page":"195","article-title":"What are artificial neural networks?","volume":"26","author":"Krogh","year":"2008","journal-title":"In: Nature biotech- nology"},{"key":"10.1016\/j.artmed.2024.102902_bb0265","unstructured":"Alex Graves. \u201cAdaptive computation time for recurrent neural net- works\u201d. In: arXiv preprint arXiv:1603.08983 (2016)."},{"key":"10.1016\/j.artmed.2024.102902_bb0270","unstructured":"Andrey Koptelov. Machine Learning. https:\/\/www.itransition.com\/machine-learning\/healthcare. [Accessed March 2023]."},{"issue":"22","key":"10.1016\/j.artmed.2024.102902_bb0275","doi-asserted-by":"crossref","first-page":"5277","DOI":"10.3390\/molecules25225277","article-title":"Machine learning methods in drug discovery","volume":"25","author":"Patel","year":"2020","journal-title":"Molecules"},{"issue":"6","key":"10.1016\/j.artmed.2024.102902_bb0280","doi-asserted-by":"crossref","first-page":"2538","DOI":"10.1021\/acs.jcim.9b00295","article-title":"QSAR-co: an open source software for devel- oping robust multitasking or multitarget classification-based QSAR models","volume":"59","author":"Ambure","year":"2019","journal-title":"J Chem Inf Model"},{"issue":"1","key":"10.1016\/j.artmed.2024.102902_bb0285","first-page":"220","article-title":"Understanding auc-roc curve","volume":"26","author":"Narkhede","year":"2018","journal-title":"In: Towards Data Science"},{"key":"10.1016\/j.artmed.2024.102902_bb0290","doi-asserted-by":"crossref","unstructured":"Asma Akhtar et al. \u201cCOVID-19 detection from CBC using machine learning techniques\u201d. In: International Journal of Technology, Inno- vation and Management (IJTIM) 1.2 (2021), pp. 65\u201378.","DOI":"10.54489\/ijtim.v1i2.22"},{"key":"10.1016\/j.artmed.2024.102902_bb0295","unstructured":"Einstein Data4u. \u201cDiagnosis of COVID-19 and its clinical spectrum\u201d. In: retrieves from https:\/\/www.kaggle.com\/einsteindata4u\/covid19 (2020)."},{"key":"10.1016\/j.artmed.2024.102902_bb0300","doi-asserted-by":"crossref","first-page":"1064","DOI":"10.1016\/j.procs.2016.04.224","article-title":"Using machine learning algorithms for breast can- cer risk predic- tion and diagnosis","volume":"83","author":"Asri","year":"2016","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.artmed.2024.102902_bb0305","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2020.117026","article-title":"AssemblyNet: a large ensemble of CNNs for 3D whole brain MRI segmentation","volume":"219","author":"Coup\u00e9","year":"2020","journal-title":"NeuroImage"},{"key":"10.1016\/j.artmed.2024.102902_bb0310","doi-asserted-by":"crossref","unstructured":"Masoumeh Siar and Mohammad Teshnehlab. \u201cBrain tumor detection using deep neural network and machine learning algorithm\u201d. In: 2019 9th international conference on computer and knowledge engineering (ICCKE). IEEE. 2019, pp. 363\u2013368.","DOI":"10.1109\/ICCKE48569.2019.8964846"},{"issue":"5786","key":"10.1016\/j.artmed.2024.102902_bb0315","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimension- ality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"key":"10.1016\/j.artmed.2024.102902_bb0320","doi-asserted-by":"crossref","first-page":"570","DOI":"10.3348\/kjr.2017.18.4.570","article-title":"Deep learning in medical imaging: general overview","volume":"18","author":"Lee","year":"2017","journal-title":"Korean J Radiol"},{"issue":"3","key":"10.1016\/j.artmed.2024.102902_bb0325","first-page":"47","article-title":"Deep learning and medical diagnosis: a review of literature","volume":"2","author":"Bakator","year":"2018","journal-title":"In: Multimodal Technologies and Interaction"},{"key":"10.1016\/j.artmed.2024.102902_bb0330","doi-asserted-by":"crossref","first-page":"2419","DOI":"10.1016\/j.procs.2020.03.295","article-title":"Brain tumor segmentation from MRI im- ages using hybrid convolutional neural networks","volume":"167","author":"Daimary","year":"2020","journal-title":"Procedia Com- puter Science"},{"key":"10.1016\/j.artmed.2024.102902_bb0335","doi-asserted-by":"crossref","first-page":"1071","DOI":"10.1007\/s11831-019-09344-w","article-title":"A survey of deep learning and its applications: a new paradigm to machine learning","volume":"27","author":"Dargan","year":"2020","journal-title":"Archives of Computational Methods in Engineering"},{"key":"10.1016\/j.artmed.2024.102902_bb0340","doi-asserted-by":"crossref","unstructured":"Justin S Paul et al. \u201cDeep learning for brain tumor classification\u201d. In: Medical Imaging 2017: Biomedical Applications in Molecular, Struc- tural, and Functional Imaging. Vol. 10137. SPIE. 2017, pp. 253\u2013268.","DOI":"10.1117\/12.2254195"},{"year":"2020","series-title":"Brain tumor identification and clas- sification of MRI images using deep learning techniques","author":"Jia","key":"10.1016\/j.artmed.2024.102902_bb0345"},{"key":"10.1016\/j.artmed.2024.102902_bb0350","doi-asserted-by":"crossref","unstructured":"Mohammad Ashraf Ottom, Hanif Abdul Rahman, and Ivo D Dinov. \u201cZnet: deep learning approach for 2D MRI brain tumor segmentation\u201d. In: IEEE Journal of Translational Engineering in Health and Medicine 10 (2022), pp. 1\u20138.","DOI":"10.1109\/JTEHM.2022.3176737"},{"issue":"2","key":"10.1016\/j.artmed.2024.102902_bb0355","article-title":"Performance of ChatGPT on USMLE: Poten- tial for AI-assisted medical education using large language models","volume":"2","author":"Kung","year":"2023","journal-title":"In: PLoS digital health"},{"key":"10.1016\/j.artmed.2024.102902_bb0360","unstructured":"John Schulman et all. Introducing ChatGPT. https:\/\/openai.com\/blog\/chatgpt. [Accessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0365","series-title":"2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC)","first-page":"699","article-title":"Brain tumor grading based on neural networks and convolutional neural networks","author":"Pan","year":"2015"},{"key":"10.1016\/j.artmed.2024.102902_bb0370","series-title":"018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC)","first-page":"5894","article-title":"Deep learning and multi-sensor fusion for glioma classification using multistream 2D convolutional networks","author":"Ge","year":"2018"},{"issue":"1","key":"10.1016\/j.artmed.2024.102902_bb0375","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12917-018-1638-2","article-title":"A methodological approach for deep learn- ing to distinguish between meningiomas and gliomas on canine MR- images","volume":"14","author":"Banzato","year":"2018","journal-title":"BMC Vet Res"},{"key":"10.1016\/j.artmed.2024.102902_bb0380","unstructured":"IBM. Explainable AI. https:\/\/www.ibm.com\/watson\/explainable-ai. [Accessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0385","doi-asserted-by":"crossref","unstructured":"Md Rezaul Karim et al. \u201cDeepcovidexplainer: explainable COVID-19 diagnosis from chest X-ray images\u201d. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE. 2020, pp. 1034\u20131037.","DOI":"10.1109\/BIBM49941.2020.9313304"},{"key":"10.1016\/j.artmed.2024.102902_bb0390","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1007\/s00259-008-0962-3","article-title":"The potential of PET\/MR for brain imaging","volume":"36","author":"Heiss","year":"2009","journal-title":"Eur J Nucl Med Mol Imaging"},{"key":"10.1016\/j.artmed.2024.102902_bb0395","doi-asserted-by":"crossref","unstructured":"Andrew M Scott. \u201cPET imaging in oncology\u201d. In: Positron Emission Tomography: Basic Sciences (2005), pp. 311\u2013325.","DOI":"10.1007\/1-84628-007-9_16"},{"issue":"9","key":"10.1016\/j.artmed.2024.102902_bb0400","first-page":"1468","article-title":"Clinical applications of PET in brain tumors","volume":"48","author":"Chen","year":"2007","journal-title":"In: Journal of nuclear medicine"},{"issue":"22","key":"10.1016\/j.artmed.2024.102902_bb0405","first-page":"2277","article-title":"Computed tomography\u2014an in- creasing source of radiation exposure","volume":"357","author":"Brenner","year":"2007","journal-title":"In: New England journal of medicine"},{"key":"10.1016\/j.artmed.2024.102902_bb0410","unstructured":"psychcentral. Brain imaging modalities. https: \/ \/psychcentral. com\/lib\/types-of-brain-imaging-techniques#types. [Accessed March 2023]."},{"issue":"6","key":"10.1016\/j.artmed.2024.102902_bb0415","doi-asserted-by":"crossref","first-page":"1787","DOI":"10.1148\/radiographics.20.6.g00nv071787","article-title":"Multisection CT: scanning techniques and clin- ical applications","volume":"20","author":"Rydberg","year":"2000","journal-title":"Radiographics"},{"issue":"3","key":"10.1016\/j.artmed.2024.102902_bb0420","first-page":"423","article-title":"18F-Flourodeoxy-glucose PET\/computed tomog- raphy in brain tumors: value to patient management and survival outcomes","volume":"10","author":"Wray","year":"2015","journal-title":"In: PET clinics"},{"key":"10.1016\/j.artmed.2024.102902_bb0425","unstructured":"Taryn Bosquez. Three important brain imaging techniques. https:\/\/blogs.iu.edu\/ sciu\/2022\/02\/05\/three - brain - imaging - techniques\/. [Accessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0430","unstructured":"PET CLINIC. F-Flourodeoxy-Glucose PET\/Computed Tomography in Brain Tumors. https: \/ \/www. pet. theclinics. com\/article\/S1556\u20138598(15)00024\u20133\/fulltext. [Accessed March 2023]."},{"issue":"9","key":"10.1016\/j.artmed.2024.102902_bb0435","first-page":"785","article-title":"Diffusion weighted imaging: technique and ap- plications","volume":"8","author":"Baliyan","year":"2016","journal-title":"In: World journal of radiology"},{"issue":"1121","key":"10.1016\/j.artmed.2024.102902_bb0440","doi-asserted-by":"crossref","DOI":"10.1259\/bjr.20201406","article-title":"Diagnostic and procedural intraoperative ultrasound: technique, tips and tricks for optimizing results","volume":"94","author":"Lubner","year":"2021","journal-title":"Br J Radiol"},{"key":"10.1016\/j.artmed.2024.102902_bb0445","doi-asserted-by":"crossref","unstructured":"Santiago Cepeda et al. \u201cComparison of intraoperative ultrasound B- mode and strain elastography for the differentiation of glioblastomas from solitary brain metastases. An automated deep learning approach for image analysis\u201d. In: Frontiers in Oncology 10 (2021), p. 590756.","DOI":"10.3389\/fonc.2020.590756"},{"key":"10.1016\/j.artmed.2024.102902_bb0450","article-title":"Rapid intraoperative multi-molecular diagnosis of glioma with ultrasound radio frequency signals and deep learning","volume":"98","author":"Xie","year":"2023","journal-title":"In: EBioMedicine"},{"key":"10.1016\/j.artmed.2024.102902_bb0455","article-title":"Intraoperative molecular di- agnosis of glioma through combination of radiofrequency signals from ultrasound and deep learning","volume":"99","author":"Jakola","year":"2024","journal-title":"In: Ebiomedicine"},{"key":"10.1016\/j.artmed.2024.102902_bb0460","first-page":"300","article-title":"A review on brain tumor diagno- sis from MRI images: practical implications, key achievements, and lessons learned","volume":"61","author":"Abd-Ellah","year":"2019","journal-title":"In: Magnetic resonance imaging"},{"issue":"2","key":"10.1016\/j.artmed.2024.102902_bb0465","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/ab8131","article-title":"Artificial intelligence in glioma imaging: challenges and advances","volume":"17","author":"Jin","year":"2020","journal-title":"J Neural Eng"},{"key":"10.1016\/j.artmed.2024.102902_bb0470","doi-asserted-by":"crossref","unstructured":"Jia Deng et al. \u201cImagenet: A large-scale hierarchical image database\u201d. In: 2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009, pp. 248\u2013255.","DOI":"10.1109\/CVPRW.2009.5206848"},{"issue":"18","key":"10.1016\/j.artmed.2024.102902_bb0475","doi-asserted-by":"crossref","first-page":"6296","DOI":"10.3390\/app10186296","article-title":"Prediction of glioma grades using deep learning with wavelet radiomic features","volume":"10","author":"\u00c7inarer","year":"2020","journal-title":"Applied Sciences"},{"key":"10.1016\/j.artmed.2024.102902_bb0480","doi-asserted-by":"crossref","DOI":"10.1016\/j.compmedimag.2021.101940","article-title":"Role of deep learning in brain tumor detection and classification (2015 to 2020): a review","volume":"91","author":"Nazir","year":"2021","journal-title":"Comput Med Imaging Graph"},{"issue":"1","key":"10.1016\/j.artmed.2024.102902_bb0485","first-page":"5467","article-title":"Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma","volume":"7","author":"Li","year":"2017","journal-title":"In: Scientific reports"},{"issue":"4","key":"10.1016\/j.artmed.2024.102902_bb0490","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1007\/s004320000188","article-title":"Treatment of malignant glioma: a problem beyond the margins of resection","volume":"127","author":"Giese","year":"2001","journal-title":"J Cancer Res Clin Oncol"},{"issue":"4","key":"10.1016\/j.artmed.2024.102902_bb0495","first-page":"920","article-title":"Deep learning-based framework for in vivo iden- tification of glioblastoma tumor using hyperspectral images of human brain","volume":"19","author":"Fabelo","year":"2019","journal-title":"In: Sensors"},{"issue":"1","key":"10.1016\/j.artmed.2024.102902_bb0500","article-title":"A deep learning-based radiomics model for pre- diction of survival in glioblastoma multiforme","volume":"7","author":"Lao","year":"2017","journal-title":"In: Scientific reports"},{"key":"10.1016\/j.artmed.2024.102902_bb0505","doi-asserted-by":"crossref","unstructured":"Li Sun, Songtao Zhang, and Lin Luo. \u201cTumor segmentation and sur- vival prediction in glioma with deep learning\u201d. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th Interna- tional Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4. Springer. 2019, pp. 83\u201393.","DOI":"10.1007\/978-3-030-11726-9_8"},{"key":"10.1016\/j.artmed.2024.102902_bb0510","unstructured":"M. D. M.\u2019Alvarez-Torres et al. \u201cDetection of local microvascular proliferation in IDH wild-type Glioblastoma using relative Cerebral Blood Volume\u201d. In: bioRxiv (Apr. 2021). doi:https:\/\/doi.org\/10.1101\/2021.04.19.21255589.url: doi:https:\/\/doi.org\/10.1101\/2021.04.19. 21255589."},{"key":"10.1016\/j.artmed.2024.102902_bb0515","doi-asserted-by":"crossref","unstructured":"S. Kebir et al. \u201cA preliminary study on machine learning-based evaluation of static and dynamic FET-PET for the detection of Pseudoprogression in patients with IDH-wildtype glioblastoma\u201d. In: Cancers 12.11 (Oct. 2020). url: doi:https:\/\/doi.org\/10.3390\/cancers12113080.","DOI":"10.3390\/cancers12113080"},{"key":"10.1016\/j.artmed.2024.102902_bb0520","series-title":"Sensors","article-title":"Hyperspectral imaging for the detection of Glioblas- Toma tumor cells in HE slides using convolutional neural networks","volume":"20.7","author":"Ortega","year":"2020"},{"issue":"5","key":"10.1016\/j.artmed.2024.102902_bb0525","doi-asserted-by":"crossref","first-page":"838","DOI":"10.3174\/ajnr.A7003","article-title":"Development and Validation of a Deep Learning\u2013Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images","volume":"42","author":"Shin","year":"2021","journal-title":"American Journal of Neuroradiology"},{"key":"10.1016\/j.artmed.2024.102902_bb0530","doi-asserted-by":"crossref","unstructured":"Shafaf Ibrahim et al. \u201cSubstantial adaptive artificial bee colony algo- rithm implementation for glioblastoma detection\u201d. In: International Journal of Artificial Intelligence (2021). url: doi:10.11591\/ijai.v12.i1. pp443-450.","DOI":"10.11591\/ijai.v12.i1.pp443-450"},{"key":"10.1016\/j.artmed.2024.102902_bb0535","doi-asserted-by":"crossref","unstructured":"Islam Alzoubi et al. \u201cAn open-source AI framework for the anal- ysis of single cells in whole-slide images with a note on CD276 in glioblastoma\u201d. In: Cancers 14.14 (July 2022). doi:https:\/\/doi.org\/10.3390\/cancers14143441.","DOI":"10.3390\/cancers14143441"},{"key":"10.1016\/j.artmed.2024.102902_bb0540","first-page":"1","article-title":"Automated neural network-based survival prediction of glioblastoma patients using pre-operative MRI and clinical data","author":"Kaur","year":"2023","journal-title":"IETE Journal of Research"},{"key":"10.1016\/j.artmed.2024.102902_bb0545","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1007\/s11060-019-03376-9","article-title":"Prediction of lower-grade glioma molecular sub- types using deep learning","volume":"146","author":"Matsui","year":"2020","journal-title":"J Neurooncol"},{"key":"10.1016\/j.artmed.2024.102902_bb0550","doi-asserted-by":"crossref","unstructured":"Farhana R. Pinu et al. \u201cSystems Biology and Multi-Omics Integra- tion: Viewpoints from the Metabolomics Research Community\u201d. In: Metabolites 9.4 (Apr. 2019), p. 76. issn: 2218\u20131989. doi:https:\/\/doi.org\/10.3390\/metabo9040076.url: doi:https:\/\/doi.org\/10.3390\/metabo9040076.","DOI":"10.3390\/metabo9040076"},{"key":"10.1016\/j.artmed.2024.102902_bb0555","doi-asserted-by":"crossref","unstructured":"Erica M. Forsberg et al. \u201cData processing, multi-omic pathway map- ping, and metabolite activity analysis using XCMS Online\u201d. In: Na- ture Protocols 13.4 (Apr. 2018). Epub 2018 Mar 1, pp. 633\u2013651. doi:https:\/\/doi.org\/10.1038\/nprot.2017.151.","DOI":"10.1038\/nprot.2017.151"},{"key":"10.1016\/j.artmed.2024.102902_bb0560","unstructured":"Wang L Zhao S Yu J. Machine learning based prediction of brain metastasis of patients with IIIA-N2 lung adenocarcinoma by a three- miRNA signature. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S1936523317303625.[Accessed March 2023]."},{"key":"10.1016\/j.artmed.2024.102902_bb0565","unstructured":"Jinling Lai, Zhen Shen, and Lin Yuan. \u201cBio-ATT-CNN: A Novel Method for Identification of Glioblastoma\u201d. In: Intelligent Computing Theories and Application: 18th International Conference, ICIC 2022, Xi'an, China, August 7\u201311, 2022, Proceedings, Part II. Xi'an, China: Springer-Verlag, 2022, pp. 767\u2013776. isbn: 978\u20133\u2013031-13828-7. doi:https:\/\/doi.org\/10.1007\/978-3-031-13829-4_69.url: doi:https:\/\/doi.org\/10.1007\/978-3-031-13829-4_69."},{"key":"10.1016\/j.artmed.2024.102902_bb0570","doi-asserted-by":"crossref","unstructured":"Anahita Fathi Kazerooni et al. \u201cClinical measures, radiomics, and ge- nomics offer synergistic value in AI-based prediction of overall survival in patients with glioblastoma\u201d. In: Scientific Reports 12.1 (May 2022), p. 8784. issn: 2045\u20132322. doi: https:\/\/doi.org\/10.1038\/s41598-022-12699-z. url: doi:https:\/\/doi.org\/10.1038\/s41598-022-12699-z.","DOI":"10.1038\/s41598-022-12699-z"},{"key":"10.1016\/j.artmed.2024.102902_bb0575","doi-asserted-by":"crossref","unstructured":"Jung Hun Oh et al. \u201cPathCNN: interpretable convolutional neural net- works for survival prediction and pathway analysis applied to glioblas- toma\u201d. In: Bioinformatics 37.Supplement1 (July 2021), pp. i443\u2013i450. issn: 1367\u20134803. doi:https:\/\/doi.org\/10.1093\/bioinformatics\/btab285.eprint: https: \/ \/academic. oup. com\/bioinfor- matics\/article - pdf\/37\/Supplement\\_1\/i443\/50694304\/btab285.pdf. url: doi:10.1093\/ bioinformatics\/btab285.","DOI":"10.1093\/bioinformatics\/btab285"},{"issue":"9","key":"10.1016\/j.artmed.2024.102902_bb0580","first-page":"2013","article-title":"Performance comparison of deep learning au- toencoders for cancer subtype detection using multi-omics data","volume":"13","author":"Franco","year":"2021","journal-title":"In: Cancers"},{"issue":"1","key":"10.1016\/j.artmed.2024.102902_bb0585","first-page":"1","article-title":"Deep learning-based ovarian cancer subtypes iden- tification using multi-omics data","volume":"13","author":"Guo","year":"2020","journal-title":"In: BioData Mining"},{"key":"10.1016\/j.artmed.2024.102902_bb0590","first-page":"166","article-title":"SALMON: survival analysis learning with multi- omics neural networks on breast cancer","volume":"10","author":"Huang","year":"2019","journal-title":"In: Frontiers in genetics"},{"key":"10.1016\/j.artmed.2024.102902_bb0595","doi-asserted-by":"crossref","unstructured":"Ming Gao et al. \u201cA Six-lncRNA Signature for Immunophenotype Pre- diction of Glioblastoma Multiforme\u201d. In: Frontiers in Genetics 11 (2021). issn: 1664\u20138021. doi:https:\/\/doi.org\/10.3389\/fgene.2020.604655.url: https:\/\/www.frontiersin.org\/articles\/10.3389\/ fgene.2020.604655.","DOI":"10.3389\/fgene.2020.604655"},{"key":"10.1016\/j.artmed.2024.102902_bb0600","doi-asserted-by":"crossref","unstructured":"Moritz Herrmann et al. \u201cLarge-scale benchmark study of survival pre- diction methods using multi-omics data\u201d. In: Briefings in bioinformat- ics 22.3 (2021), bbaa167.","DOI":"10.1093\/bib\/bbaa167"},{"key":"10.1016\/j.artmed.2024.102902_bb0605","article-title":"Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis","volume":"79","author":"Xiao","year":"2022","journal-title":"In: EBioMedicine"},{"issue":"1","key":"10.1016\/j.artmed.2024.102902_bb0610","article-title":"The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes","volume":"7","author":"Pereira","year":"2016","journal-title":"In: Na- ture communications"},{"issue":"8","key":"10.1016\/j.artmed.2024.102902_bb0615","first-page":"1148","article-title":"Integration of radiomic and multi-omic analy- ses predicts survival of newly diagnosed IDH1 wild-type glioblastoma","volume":"11","author":"Chaddad","year":"2019","journal-title":"In: Cancers"},{"issue":"11","key":"10.1016\/j.artmed.2024.102902_bb0620","doi-asserted-by":"crossref","first-page":"1062","DOI":"10.1007\/s12094-016-1497-x","article-title":"Survival in glioblas- Toma: a review on the impact of treatment modalities","volume":"18","author":"Delgado-L\u00f3pez","year":"2016","journal-title":"Clinical and Translational Oncology"},{"issue":"4","key":"10.1016\/j.artmed.2024.102902_bb0625","doi-asserted-by":"crossref","DOI":"10.1177\/14604582221135427","article-title":"Machine learning based survival prediction in glioma using large-scale registry data","volume":"28","author":"Zhao","year":"2022","journal-title":"Health Informatics J"},{"key":"10.1016\/j.artmed.2024.102902_bb0630","doi-asserted-by":"crossref","unstructured":"Mateusz Garbulowski et al. \u201cMachine Learning-Based Analysis of Glioma Grades Reveals Co-Enrichment\u201d. In: Cancers 14.4 (2022). Academic Editor: Daniela L\u00f6tsch, p. 1014. issn: 2072\u20136694. doi:103390\/cancers14041014. url: doi:10.3390\/ cancers14041014.","DOI":"10.3390\/cancers14041014"},{"key":"10.1016\/j.artmed.2024.102902_bb0635","doi-asserted-by":"crossref","unstructured":"Jianyang Du et al. \u201cIdentification of prognostic model and biomark- ers for Cancer stem cell characteristics in glioblastoma by network analysis of multi-omics data and Stemness indices\u201d. In: Frontiers in Cell and Developmental Biology 8 (2020). issn: 2296-634X. doi:https:\/\/doi.org\/10.3389\/fcell.2020.558961.url: https:\/\/www.frontiersin.org\/ articles\/https:\/\/doi.org\/10.3389\/fcell.2020.558961.","DOI":"10.3389\/fcell.2020.558961"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001441?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001441?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T10:42:52Z","timestamp":1722940972000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724001441"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":127,"alternative-id":["S0933365724001441"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102902","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A comprehensive survey on the use of deep learning techniques in glioblastoma","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102902","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102902"}}