{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T00:36:48Z","timestamp":1722991008117},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004515","name":"National University of Malaysia","doi-asserted-by":"publisher","award":["GGPM-2022-063"],"id":[{"id":"10.13039\/501100004515","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102901","type":"journal-article","created":{"date-parts":[[2024,6,5]],"date-time":"2024-06-05T10:41:48Z","timestamp":1717584108000},"page":"102901","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Systematic literature review on reinforcement learning in non-communicable disease interventions"],"prefix":"10.1016","volume":"154","author":[{"given":"Yanfeng","family":"Zhao","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6839-0784","authenticated-orcid":false,"given":"Jun Kit","family":"Chaw","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Sook Hui","family":"Chaw","sequence":"additional","affiliation":[]},{"given":"Mei Choo","family":"Ang","sequence":"additional","affiliation":[]},{"given":"Tin Tin","family":"Ting","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.artmed.2024.102901_bb0005","doi-asserted-by":"crossref","first-page":"e013994","DOI":"10.1136\/bmjgh-2023-013994","article-title":"Strengthening evidence to inform health systems: opportunities for the WHO and partners to accelerate progress on non-communicable diseases","volume":"8","author":"Hyder","year":"2023","journal-title":"BMJ Glob Health"},{"issue":"1","key":"10.1016\/j.artmed.2024.102901_bb0010","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1186\/s12961-021-00732-y","article-title":"The household financial burden of non-communicable diseases in low- and middle-income countries: a systematic review","volume":"19","author":"Kazibwe","year":"2021","journal-title":"Heal Res Policy Syst"},{"key":"10.1016\/j.artmed.2024.102901_bb0015","series-title":"Noncommunicable diseases","first-page":"234","article-title":"The WHO global action plan for the prevention and control of NCDs 2013\u20132030","author":"Banatvala","year":"2023"},{"issue":"1","key":"10.1016\/j.artmed.2024.102901_bb0020","doi-asserted-by":"crossref","first-page":"5694","DOI":"10.1038\/s41598-022-09354-y","article-title":"Poor perception of chronic kidney diseases and its influencing factors among diabetics patients","volume":"12","author":"Shah","year":"2022","journal-title":"Sci Rep"},{"issue":"June","key":"10.1016\/j.artmed.2024.102901_bb0025","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1016\/j.procs.2017.11.256","article-title":"Machine learning techniques for classification of breast tissue","volume":"120","author":"Helwan","year":"2017","journal-title":"Procedia Comput Sci"},{"issue":"19","key":"10.1016\/j.artmed.2024.102901_bb0030","doi-asserted-by":"crossref","first-page":"1885","DOI":"10.1182\/blood.2020010603","article-title":"Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia","volume":"138","author":"Awada","year":"2021","journal-title":"Blood"},{"issue":"2","key":"10.1016\/j.artmed.2024.102901_bb0035","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1002\/jeab.587","article-title":"The dynamics of behavior: review of Sutton and Barto: reinforcement learning: an introduction (2 nd ed.)","volume":"113","author":"Staddon","year":"2020","journal-title":"J Exp Anal Behav"},{"key":"10.1016\/j.artmed.2024.102901_bb0040","first-page":"70","article-title":"Deep reinforcement learning framework for autonomous driving","author":"El Sallab","year":"2017","journal-title":"IS T Int Symp Electron Imaging Sci Technol"},{"issue":"6419","key":"10.1016\/j.artmed.2024.102901_bb0045","doi-asserted-by":"crossref","first-page":"1140","DOI":"10.1126\/science.aar6404","article-title":"A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play","volume":"362","author":"Silver","year":"2018","journal-title":"Science (80-. )"},{"issue":"7782","key":"10.1016\/j.artmed.2024.102901_bb0050","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1038\/s41586-019-1724-z","article-title":"Grandmaster level in StarCraft II using multi-agent reinforcement learning","volume":"575","author":"Vinyals","year":"2019","journal-title":"Nature"},{"issue":"18","key":"10.1016\/j.artmed.2024.102901_bb0055","doi-asserted-by":"crossref","DOI":"10.3390\/cancers13184624","article-title":"Reinforcement learning for precision oncology","volume":"13","author":"Eckardt","year":"2021","journal-title":"Cancers (Basel)"},{"issue":"9","key":"10.1016\/j.artmed.2024.102901_bb0060","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0274608","article-title":"Evaluation of blood glucose level control in type 1 diabetic patients using deep reinforcement learning","volume":"17","author":"Viroonluecha","year":"2022","journal-title":"PLoS One"},{"issue":"2","key":"10.1016\/j.artmed.2024.102901_bb0065","doi-asserted-by":"crossref","first-page":"1374","DOI":"10.1007\/s11227-022-04709-8","article-title":"Ovarian cysts classification using novel deep reinforcement learning with Harris Hawks Optimization method","volume":"79","author":"Narmatha","year":"2023","journal-title":"J Supercomput"},{"issue":"3","key":"10.1016\/j.artmed.2024.102901_bb0070","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1007\/s11257-019-09242-7","article-title":"Personalized weight loss strategies by mining activity tracker data","volume":"30","author":"Gasparetti","year":"2020","journal-title":"User Model User-adapt Interact"},{"key":"10.1016\/j.artmed.2024.102901_bb0075","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102062","article-title":"A reinforcement learning based algorithm for personalization of digital, just-in-time, adaptive interventions","volume":"115","author":"G\u00f6n\u00fcl","year":"2021","journal-title":"Artif Intell Med"},{"issue":"15","key":"10.1016\/j.artmed.2024.102901_bb0080","article-title":"A value-based deep reinforcement learning model with human expertise in optimal treatment of sepsis","volume":"6","author":"Wu","year":"2023","journal-title":"npj Digit Med"},{"issue":"C","key":"10.1016\/j.artmed.2024.102901_bb0085","article-title":"Effective data-driven precision medicine by cluster-applied deep reinforcement learning","volume":"256","author":"Oh","year":"2022","journal-title":"Knowledge-Based Syst"},{"issue":"20","key":"10.1016\/j.artmed.2024.102901_bb0090","doi-asserted-by":"crossref","first-page":"4034","DOI":"10.1002\/sim.9491","article-title":"Deep reinforcement learning for personalized treatment recommendation","volume":"41","author":"Liu","year":"2022","journal-title":"Stat Med"},{"issue":"1","key":"10.1016\/j.artmed.2024.102901_bb0095","doi-asserted-by":"crossref","DOI":"10.1186\/s12911-022-01774-0","article-title":"Learning dynamic treatment strategies for coronary heart diseases by artificial intelligence: real-world data-driven study","volume":"22","author":"Guo","year":"2022","journal-title":"BMC Med Inform Decis Mak"},{"key":"10.1016\/j.artmed.2024.102901_bb0100","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.neucom.2022.01.030","article-title":"Planning sequential interventions to tackle depression in large uncertain social networks using deep reinforcement learning","volume":"481","author":"Aung","year":"2022","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.artmed.2024.102901_bb0105","doi-asserted-by":"crossref","first-page":"2633","DOI":"10.1109\/JBHI.2018.2887067","article-title":"A dual mode adaptive basal-bolus advisor based on reinforcement learning","volume":"23","author":"Sun","year":"2019","journal-title":"IEEE J Biomed Heal Informatics"},{"issue":"6475","key":"10.1016\/j.artmed.2024.102901_bb0110","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1126\/science.aaz3834","article-title":"Are noncommunicable diseases communicable?","volume":"367","author":"Finlay","year":"2020","journal-title":"Science (80- )"},{"issue":"3","key":"10.1016\/j.artmed.2024.102901_bb0115","doi-asserted-by":"crossref","first-page":"276","DOI":"10.11613\/BM.2012.031","article-title":"Interrater reliability\u00a0: the kappa statistic","volume":"22","author":"McHugh","year":"2012","journal-title":"Biochem Med"},{"issue":"89","key":"10.1016\/j.artmed.2024.102901_bb0120","article-title":"The PRISMA 2020 statement: an updated guideline for reporting systematic reviews","volume":"10","author":"Page","year":"2021","journal-title":"Syst Rev"},{"issue":"160","key":"10.1016\/j.artmed.2024.102901_bb0125","article-title":"Abstract screening using the automated tool Rayyan: results of effectiveness in three diagnostic test accuracy systematic reviews","volume":"22","author":"Valizadeh","year":"2022","journal-title":"BMC Med Res Methodol"},{"issue":"7","key":"10.1016\/j.artmed.2024.102901_bb0130","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2196\/27858","article-title":"Effective treatment recommendations for type 2 diabetes management using reinforcement learning: treatment recommendation model development and validation","volume":"23","author":"Sun","year":"2021","journal-title":"J Med Internet Res"},{"key":"10.1016\/j.artmed.2024.102901_bb0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102137","article-title":"Deep reinforcement learning for fractionated radiotherapy in non-small cell lung carcinoma","volume":"119","author":"Tortora","year":"2021","journal-title":"Artif Intell Med"},{"issue":"10","key":"10.1016\/j.artmed.2024.102901_bb0140","doi-asserted-by":"crossref","first-page":"1305","DOI":"10.1002\/psp4.12843","article-title":"Artificial intelligence\u2013guided precision treatment of chronic kidney disease\u2013mineral bone disorder","volume":"11","author":"Gaweda","year":"2022","journal-title":"CPT Pharmacometrics Syst Pharmacol"},{"key":"10.1016\/j.artmed.2024.102901_bb0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102847","article-title":"Personalized vital signs control based on continuous action-space reinforcement learning with supervised experience","volume":"69","author":"Sun","year":"2021","journal-title":"Biomed Signal Process Control"},{"key":"10.1016\/j.artmed.2024.102901_bb0150","doi-asserted-by":"crossref","first-page":"105756","DOI":"10.1109\/ACCESS.2021.3100007","article-title":"A blood glucose control framework based on reinforcement learning with safety and interpretability: in silico validation","volume":"9","author":"Lim","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.artmed.2024.102901_bb0155","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.ins.2022.08.028","article-title":"A model-based hybrid soft actor-critic deep reinforcement learning algorithm for optimal ventilator settings","volume":"611","author":"Chen","year":"2022","journal-title":"Inf Sci (Ny)"},{"issue":"7","key":"10.1016\/j.artmed.2024.102901_bb0160","doi-asserted-by":"crossref","first-page":"926","DOI":"10.1631\/FITEE.2000127","article-title":"A self-supervised method for treatment recommendation in sepsis","volume":"22","author":"Zhu","year":"2021","journal-title":"Front Inf Technol Electron Eng"},{"key":"10.1016\/j.artmed.2024.102901_bb0165","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107689","article-title":"A latent batch-constrained deep reinforcement learning approach for precision dosing clinical decision support","volume":"237","author":"Qiu","year":"2022","journal-title":"Knowledge-Based Syst"},{"key":"10.1016\/j.artmed.2024.102901_bb0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.101917","article-title":"Near-optimal insulin treatment for diabetes patients: a machine learning approach","volume":"107","author":"Shifrin","year":"2020","journal-title":"Artif Intell Med"},{"issue":"1","key":"10.1016\/j.artmed.2024.102901_bb0175","first-page":"8392","article-title":"Dynamic control of stochastic evolution: a deep reinforcement learning approach to adaptively targeting emergent drug resistance","volume":"21","author":"Engelhardt","year":"2020","journal-title":"J Mach Learn Res"},{"issue":"7","key":"10.1016\/j.artmed.2024.102901_bb0180","doi-asserted-by":"crossref","DOI":"10.3390\/e24070931","article-title":"Research on computer-aided diagnosis method based on symptom filtering and weighted network","volume":"24","author":"Huang","year":"2022","journal-title":"Entropy"},{"issue":"6","key":"10.1016\/j.artmed.2024.102901_bb0185","doi-asserted-by":"crossref","first-page":"2633","DOI":"10.1109\/JBHI.2018.2887067","article-title":"A dual mode adaptive basal-bolus advisor based on reinforcement learning","volume":"23","author":"Sun","year":"2019","journal-title":"IEEE J Biomed Heal Informatics"},{"issue":"4","key":"10.1016\/j.artmed.2024.102901_bb0190","doi-asserted-by":"crossref","first-page":"482","DOI":"10.1109\/TRPMS.2021.3094874","article-title":"Reinforcement learning with safe exploration for adaptive plasma cancer treatment","volume":"6","author":"Hou","year":"2022","journal-title":"IEEE Trans Radiat Plasma Med Sci"},{"issue":"3","key":"10.1016\/j.artmed.2024.102901_bb0195","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1002\/psp4.12588","article-title":"Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology","volume":"10","author":"Maier","year":"2021","journal-title":"CPT Pharmacometrics Syst Pharmacol"},{"issue":"7","key":"10.1016\/j.artmed.2024.102901_bb0200","doi-asserted-by":"crossref","DOI":"10.2196\/18477","article-title":"Reinforcement learning for clinical decision support in critical care: comprehensive review","volume":"22","author":"Liu","year":"2020","journal-title":"J Med Internet Res"},{"key":"10.1016\/j.artmed.2024.102901_bb0205","doi-asserted-by":"crossref","DOI":"10.1016\/j.is.2021.101878","article-title":"Electronic health records based reinforcement learning for treatment optimizing","volume":"104","author":"Li","year":"2022","journal-title":"Inf Syst"},{"key":"10.1016\/j.artmed.2024.102901_bb0210","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1016\/j.ins.2022.07.080","article-title":"An intelligent intervention strategy for patients to prevent chronic complications based on reinforcement learning","volume":"612","author":"You","year":"2022","journal-title":"Inf Sci (Ny)"},{"issue":"2","key":"10.1016\/j.artmed.2024.102901_bb0215","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1017\/S0890060420000141","article-title":"Reinforcement learning-based collision avoidance: impact of reward function and knowledge transfer","volume":"34","author":"Liu","year":"2020","journal-title":"Artif Intell Eng Des Anal Manuf AIEDAM"},{"issue":"7","key":"10.1016\/j.artmed.2024.102901_bb0220","doi-asserted-by":"crossref","DOI":"10.1145\/3543846","article-title":"Reinforcement learning based recommender systems: a survey","volume":"55","author":"Afsar","year":"2022","journal-title":"ACM Comput Surv"},{"issue":"1","key":"10.1016\/j.artmed.2024.102901_bb0225","article-title":"Learning the dynamic treatment regimes from medical registry data through deep Q-network","volume":"9","author":"Liu","year":"2019","journal-title":"Sci Rep"},{"key":"10.1016\/j.artmed.2024.102901_bb0230","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2022.104006","article-title":"Deep neural networks for neuro-oncology: towards patient individualized design of chemo-radiation therapy for Glioblastoma patients","volume":"127","author":"Ebrahimi Zade","year":"2022","journal-title":"J Biomed Inform"},{"issue":"1","key":"10.1016\/j.artmed.2024.102901_bb0235","doi-asserted-by":"crossref","DOI":"10.1147\/JRD.2017.2769320","article-title":"An interpretable health behavioral intervention policy for mobile device users","volume":"62","author":"Hu","year":"2018","journal-title":"IBM J Res Dev"},{"key":"10.1016\/j.artmed.2024.102901_bb0240","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117932","article-title":"Reinforcement learning-based expanded personalized diabetes treatment recommendation using South Korean electronic health records","volume":"206","author":"Oh","year":"2022","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.artmed.2024.102901_bb0245","doi-asserted-by":"crossref","first-page":"119403","DOI":"10.1109\/ACCESS.2019.2935763","article-title":"Using sequential decision making to improve lung cancer screening performance","volume":"7","author":"Petousis","year":"2019","journal-title":"IEEE ACCESS"},{"key":"10.1016\/j.artmed.2024.102901_bb0250","doi-asserted-by":"crossref","DOI":"10.1155\/2022\/8733632","article-title":"RLMD-PA: a reinforcement learning-based myocarditis diagnosis combined with a population-based algorithm for pretraining weights","volume":"2022","author":"Moravvej","year":"2022","journal-title":"Contrast Media Mol Imaging"},{"key":"10.1016\/j.artmed.2024.102901_bb0255","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108292","article-title":"A knowledge infused context driven dialogue agent for disease diagnosis using hierarchical reinforcement learning","volume":"242","author":"Tiwari","year":"2022","journal-title":"Knowledge-Based Syst"},{"issue":"1","key":"10.1016\/j.artmed.2024.102901_bb0260","doi-asserted-by":"crossref","DOI":"10.3390\/jpm12010087","article-title":"Precision medicine for hypertension patients with type 2 diabetes via reinforcement learning","volume":"12","author":"Oh","year":"2022","journal-title":"J Pers Med"},{"issue":"7","key":"10.1016\/j.artmed.2024.102901_bb0265","doi-asserted-by":"crossref","first-page":"1973","DOI":"10.1007\/s13042-021-01287-8","article-title":"Cancer cells population control in a delayed-model of a leukemic patient using the combination of the eligibility traces algorithm and neural networks","volume":"12","author":"Kalhor","year":"2021","journal-title":"Int J Mach Learn Cybern"},{"issue":"13","key":"10.1016\/j.artmed.2024.102901_bb0270","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ac09a2","article-title":"A hierarchical deep reinforcement learning framework for intelligent automatic treatment planning of prostate cancer intensity modulated radiation therapy","volume":"66","author":"Shen","year":"2021","journal-title":"Phys Med Biol"},{"issue":"9","key":"10.1016\/j.artmed.2024.102901_bb0275","doi-asserted-by":"crossref","first-page":"4763","DOI":"10.1109\/JBHI.2022.3183854","article-title":"Supervised optimal chemotherapy regimen based on offline reinforcement learning","volume":"26","author":"Shiranthika","year":"2022","journal-title":"IEEE J. Biomed. Heal. Informatics"},{"key":"10.1016\/j.artmed.2024.102901_bb0280","first-page":"100290","article-title":"A predictive analytics model using machine learning algorithms to estimate the risk of shock development among dengue patients","author":"Chaw","year":"2023","journal-title":"Healthc Anal"},{"key":"10.1016\/j.artmed.2024.102901_bb0285","series-title":"IVIC\u201923","first-page":"648","article-title":"A diabetes prediction model with visualized explainable artificial intelligence (XAI) technology BT - advances in visual informatics","author":"Zhao","year":"2023"},{"issue":"1","key":"10.1016\/j.artmed.2024.102901_bb0290","doi-asserted-by":"crossref","DOI":"10.1145\/3477600","article-title":"Reinforcement learning in healthcare: a survey","volume":"55","author":"Yu","year":"2021","journal-title":"ACM Comput Surv"},{"key":"10.1016\/j.artmed.2024.102901_bb0295","series-title":"30th AAAI Conf. Artif. Intell. AAAI 2016, no. 2012","first-page":"1758","article-title":"Bounded optimal exploration in MDP","author":"Kawaguchi","year":"2016"},{"issue":"4","key":"10.1016\/j.artmed.2024.102901_bb0300","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/ijerph19042267","article-title":"Advancing behavioral intervention and theory development for mobile health: the heart steps II protocol","volume":"19","author":"Spruijt-Metz","year":"2022","journal-title":"Int J Environ Res Public Health"},{"key":"10.1016\/j.artmed.2024.102901_bb0305","first-page":"2578","article-title":"EX2: exploration with exemplar models for deep reinforcement learning","volume":"2017-Decem","author":"Fu","year":"2017","journal-title":"Adv Neural Inf Process Syst"},{"key":"10.1016\/j.artmed.2024.102901_bb0310","series-title":"35th Int. Conf. Mach. Learn. ICML 2018","first-page":"2051","article-title":"Coordinated exploration in concurrent reinforcement learning","volume":"vol. 3","author":"Dimakopoulou","year":"2018"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S093336572400143X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S093336572400143X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T10:42:30Z","timestamp":1722940950000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S093336572400143X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":62,"alternative-id":["S093336572400143X"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102901","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Systematic literature review on reinforcement learning in non-communicable disease interventions","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102901","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102901"}}