{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T00:35:57Z","timestamp":1722990957058},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.artmed.2024.102899","type":"journal-article","created":{"date-parts":[[2024,5,24]],"date-time":"2024-05-24T16:26:47Z","timestamp":1716568007000},"page":"102899","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Consensus modeling: Safer transfer learning for small health systems"],"prefix":"10.1016","volume":"154","author":[{"given":"Roshan","family":"Tourani","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7800-455X","authenticated-orcid":false,"given":"Dennis H.","family":"Murphree","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9081-7249","authenticated-orcid":false,"given":"Adam","family":"Sheka","sequence":"additional","affiliation":[]},{"given":"Genevieve B.","family":"Melton","sequence":"additional","affiliation":[]},{"given":"Daryl J.","family":"Kor","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4715-5934","authenticated-orcid":false,"given":"Gyorgy J.","family":"Simon","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2009","series-title":"The elements of statistical learning: Data mining, inference, and prediction","author":"Hastie","key":"10.1016\/j.artmed.2024.102899_b1"},{"issue":"5","key":"10.1016\/j.artmed.2024.102899_b2","doi-asserted-by":"crossref","first-page":"S19","DOI":"10.1016\/j.amjsurg.2009.07.025","article-title":"Design and statistical methodology of the National Surgical Quality Improvement Program: why is it what it is?","volume":"198","author":"Henderson","year":"2009","journal-title":"Am J Surg"},{"issue":"9","key":"10.1016\/j.artmed.2024.102899_b3","doi-asserted-by":"crossref","first-page":"468","DOI":"10.1016\/j.mpsur.2014.06.011","article-title":"Prevention of surgical site infections","volume":"32","author":"Phillips","year":"2014","journal-title":"Surgery (Oxford)"},{"issue":"12","key":"10.1016\/j.artmed.2024.102899_b4","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0083743","article-title":"A systematic review of risk factors associated with surgical site infections among surgical patients","volume":"8","author":"Korol","year":"2013","journal-title":"PLoS One"},{"issue":"3","key":"10.1016\/j.artmed.2024.102899_b5","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1001\/archsurg.138.3.314","article-title":"Risk factors for postoperative infectious complications in noncolorectal abdominal surgery: a multivariate analysis based on a prospective multicenter study of 4718 patients","volume":"138","author":"Pessaux","year":"2003","journal-title":"Arch Surg"},{"year":"2019","series-title":"Clinical classifications software (CCS) for ICD-9-CM & ICD-10-CM\/PCS","author":"U.S. Agency for Healthcare Research and Quality","key":"10.1016\/j.artmed.2024.102899_b6"},{"key":"10.1016\/j.artmed.2024.102899_b7","series-title":"17th world congress on medical and health informatics, MEDINFo 2019","first-page":"398","article-title":"The value of aggregated high-resolution intraoperative data for predicting post-surgical infectious complications at two independent sites","author":"Tourani","year":"2019"},{"issue":"3","key":"10.1016\/j.artmed.2024.102899_b8","article-title":"Reminder of the first paper on transfer learning in neural networks, 1976","volume":"44","author":"Bozinovski","year":"2020","journal-title":"Informatica (Ljubl)"},{"issue":"5","key":"10.1016\/j.artmed.2024.102899_b9","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","article-title":"Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning","volume":"35","author":"Shin","year":"2016","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.artmed.2024.102899_b10","series-title":"2020 42nd annual international conference of the IEEE engineering in medicine & biology society","first-page":"1596","article-title":"3-to-1 pipeline: Restructuring transfer learning pipelines for medical imaging classification via optimized GAN synthetic images","author":"Choong","year":"2020"},{"issue":"5","key":"10.1016\/j.artmed.2024.102899_b11","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/j.crad.2017.11.015","article-title":"Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks","volume":"73","author":"Kim","year":"2018","journal-title":"Clin Radiol"},{"issue":"4","key":"10.1016\/j.artmed.2024.102899_b12","doi-asserted-by":"crossref","first-page":"738","DOI":"10.3390\/cancers13040738","article-title":"Transfer learning in breast cancer diagnoses via ultrasound imaging","volume":"13","author":"Ayana","year":"2021","journal-title":"Cancers"},{"key":"10.1016\/j.artmed.2024.102899_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.jneumeth.2019.108319","article-title":"Transfer learning of deep neural network representations for fMRI decoding","volume":"328","author":"Svanera","year":"2019","journal-title":"J Neurosci Methods"},{"key":"10.1016\/j.artmed.2024.102899_b14","doi-asserted-by":"crossref","unstructured":"Oniani David, Wang Yanshan. A qualitative evaluation of language models on automatic question-answering for covid-19. In: Proceedings of the 11th ACM international conference on bioinformatics, computational biology and health informatics. 2020, p. 1\u20139.","DOI":"10.1145\/3388440.3412413"},{"key":"10.1016\/j.artmed.2024.102899_b15","series-title":"2019 IEEE international conference on data science and advanced analytics","first-page":"277","article-title":"Breast cancer classification using deep transfer learning on structured healthcare data","author":"Farhadi","year":"2019"},{"year":"2014","series-title":"How transferable are features in deep neural networks?","author":"Yosinski","key":"10.1016\/j.artmed.2024.102899_b16"},{"year":"2019","series-title":"Federated learning for healthcare informatics","author":"Xu","key":"10.1016\/j.artmed.2024.102899_b17"},{"issue":"2","key":"10.1016\/j.artmed.2024.102899_b18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3298981","article-title":"Federated machine learning: Concept and applications","volume":"10","author":"Yang","year":"2019","journal-title":"ACM Trans Intell Syst Technol"},{"year":"2016","series-title":"Communication-efficient learning of deep networks from decentralized data","author":"McMahan","key":"10.1016\/j.artmed.2024.102899_b19"},{"year":"2019","series-title":"Advances and open problems in federated learning","author":"Kairouz","key":"10.1016\/j.artmed.2024.102899_b20"},{"key":"10.1016\/j.artmed.2024.102899_b21","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.ijmedinf.2018.01.007","article-title":"Federated learning of predictive models from federated electronic health records","volume":"112","author":"Brisimi","year":"2018","journal-title":"Int J Med Inf"},{"key":"10.1016\/j.artmed.2024.102899_b22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jnca.2018.05.003","article-title":"Distributed learning of deep neural network over multiple agents","volume":"116","author":"Gupta","year":"2018","journal-title":"J Netw Comput Appl"},{"year":"2018","series-title":"Secure federated transfer learning","author":"Liu","key":"10.1016\/j.artmed.2024.102899_b23"},{"year":"2020","series-title":"Adaptive federated optimization","author":"Reddi","key":"10.1016\/j.artmed.2024.102899_b24"},{"issue":"1","key":"10.1016\/j.artmed.2024.102899_b25","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1007\/s41237-016-0013-5","article-title":"Methods for computational causal discovery in biomedicine","volume":"44","author":"Ma","year":"2017","journal-title":"Behaviormetrika"},{"key":"10.1016\/j.artmed.2024.102899_b26","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1201\/9781584888796.ch4","article-title":"Causal feature selection","author":"Guyon","year":"2007","journal-title":"Comput Methods Feature Sel"},{"issue":"1","key":"10.1016\/j.artmed.2024.102899_b27","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1186\/s40537-016-0043-6","article-title":"A survey of transfer learning","volume":"3","author":"Weiss","year":"2016","journal-title":"J Big data"},{"year":"2020","series-title":"Federated learning with matched averaging","author":"Wang","key":"10.1016\/j.artmed.2024.102899_b28"},{"key":"10.1016\/j.artmed.2024.102899_b29","series-title":"International conference on artificial intelligence in medicine","first-page":"181","article-title":"Consensus modeling: A transfer learning approach for small health systems","author":"Tourani","year":"2020"},{"issue":"3","key":"10.1016\/j.artmed.2024.102899_b30","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1007\/s00186-007-0161-1","article-title":"Biconvex sets and optimization with biconvex functions: a survey and extensions","volume":"66","author":"Gorski","year":"2007","journal-title":"Math Methods Oper Res"},{"key":"10.1016\/j.artmed.2024.102899_b31","doi-asserted-by":"crossref","DOI":"10.1001\/jama.2019.20866","article-title":"Challenges to the reproducibility of machine learning models in health care","author":"Beam","year":"2020","journal-title":"JAMA"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001416?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724001416?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T10:41:44Z","timestamp":1722940904000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724001416"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":31,"alternative-id":["S0933365724001416"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102899","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Consensus modeling: Safer transfer learning for small health systems","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102899","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102899"}}