{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:15:12Z","timestamp":1740118512094,"version":"3.37.3"},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,2,23]],"date-time":"2024-02-23T00:00:00Z","timestamp":1708646400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001871","name":"FCT","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001871","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.artmed.2024.102820","type":"journal-article","created":{"date-parts":[[2024,2,23]],"date-time":"2024-02-23T11:12:57Z","timestamp":1708686777000},"page":"102820","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Predicting drug activity against cancer through genomic profiles and SMILES"],"prefix":"10.1016","volume":"150","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-9011-0734","authenticated-orcid":false,"given":"Maryam","family":"Abbasi","sequence":"first","affiliation":[]},{"given":"Filipa G.","family":"Carvalho","sequence":"additional","affiliation":[]},{"given":"Bernardete","family":"Ribeiro","sequence":"additional","affiliation":[]},{"given":"Joel P.","family":"Arrais","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.artmed.2024.102820_b1","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1038\/nature02626","article-title":"Moving towards individualized medicine with pharmacogenomics","volume":"429","author":"Evans","year":"2004","journal-title":"Nature"},{"key":"10.1016\/j.artmed.2024.102820_b2","first-page":"A68","article-title":"The cancer genome atlas (TCGA): an immeasurable source of knowledge","volume":"19","author":"Tomczak","year":"2015","journal-title":"Contemp Oncol"},{"issue":"2","key":"10.1016\/j.artmed.2024.102820_b3","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1016\/j.cell.2019.12.023","article-title":"Quantitative proteomics of the cancer cell line encyclopedia","volume":"180","author":"Nusinow","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.artmed.2024.102820_b4","unstructured":"Costa F, De Grave K. Fast Neighborhood Subgraph Pairwise Distance Kernel. In: International conference on machine learning. 2010, p. 255\u201362."},{"issue":"14","key":"10.1016\/j.artmed.2024.102820_b5","doi-asserted-by":"crossref","first-page":"i359","DOI":"10.1093\/bioinformatics\/btx266","article-title":"Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression","volume":"33","author":"Ammad-Ud-Din","year":"2017","journal-title":"Bioinformatics"},{"issue":"8","key":"10.1016\/j.artmed.2024.102820_b6","doi-asserted-by":"crossref","first-page":"2077","DOI":"10.1021\/acs.jcim.7b00166","article-title":"Profile-QSAR 2.0: kinase virtual screening accuracy comparable to four-concentration IC50s for realistically novel compounds","volume":"57","author":"Martin","year":"2017","journal-title":"J Chem Inf Model"},{"key":"10.1016\/j.artmed.2024.102820_b7","doi-asserted-by":"crossref","first-page":"4797","DOI":"10.1021\/acs.molpharmaceut.9b00520","article-title":"Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders","volume":"16","author":"Manica","year":"2019","journal-title":"Mol Pharmaceut"},{"issue":"Supplement_2","key":"10.1016\/j.artmed.2024.102820_b8","doi-asserted-by":"crossref","first-page":"i911","DOI":"10.1093\/bioinformatics\/btaa822","article-title":"Deepcdr: a hybrid graph convolutional network for predicting cancer drug response","volume":"36","author":"Liu","year":"2020","journal-title":"Bioinformatics"},{"key":"10.1016\/j.artmed.2024.102820_b9","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1186\/s12920-018-0460-9","article-title":"Predicting drug response of tumors from integrated genomic profiles by deep neural networks","volume":"12","author":"Chiu","year":"2019","journal-title":"BMC Med Genom"},{"key":"10.1016\/j.artmed.2024.102820_b10","doi-asserted-by":"crossref","first-page":"8857","DOI":"10.1038\/s41598-018-27214-6","article-title":"Cancer drug response profile scan (CDRscan): A deep learning model that predicts drug effectiveness from cancer genomic signature","volume":"8","author":"Chang","year":"2018","journal-title":"Sci Rep"},{"key":"10.1016\/j.artmed.2024.102820_b11","doi-asserted-by":"crossref","first-page":"434","DOI":"10.1186\/s12859-021-04352-9","article-title":"Swnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures","volume":"22","author":"Zuo","year":"2021","journal-title":"BMC Bioinformatics"},{"issue":"8","key":"10.1016\/j.artmed.2024.102820_b12","doi-asserted-by":"crossref","first-page":"3858","DOI":"10.1021\/acs.jcim.1c00706","article-title":"Hidra: hierarchical network for drug response prediction with attention","volume":"61","author":"Jin","year":"2021","journal-title":"J Chem Inf Model"},{"issue":"3","key":"10.1016\/j.artmed.2024.102820_b13","doi-asserted-by":"crossref","first-page":"bbac100","DOI":"10.1093\/bib\/bbac100","article-title":"Deeptta: a transformer-based model for predicting cancer drug response","volume":"23","author":"Jiang","year":"2022","journal-title":"Brief Bioinform"},{"issue":"14","key":"10.1016\/j.artmed.2024.102820_b14","doi-asserted-by":"crossref","first-page":"3609","DOI":"10.1093\/bioinformatics\/btac383","article-title":"Looking at the BiG picture: incorporating bipartite graphs in drug response prediction","volume":"38","author":"Hostallero","year":"2022","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.artmed.2024.102820_b15","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1093\/bib\/bbz171","article-title":"Deep learning for drug response prediction in cancer","volume":"22","author":"Baptista","year":"2020","journal-title":"Brief Bioinform"},{"key":"10.1016\/j.artmed.2024.102820_b16","series-title":"Molecular pathology in cancer research","first-page":"137","article-title":"Gene expression analysis: Applications","author":"Savas","year":"2016"},{"issue":"11","key":"10.1016\/j.artmed.2024.102820_b17","doi-asserted-by":"crossref","first-page":"1282","DOI":"10.2174\/156802612800672844","article-title":"The IC50 concept revisited","volume":"12","author":"Caldwell","year":"2012","journal-title":"Curr Top Med Chem"},{"year":"2022","series-title":"CTD2 data portal","author":"National Cancer Institute","key":"10.1016\/j.artmed.2024.102820_b18"},{"key":"10.1016\/j.artmed.2024.102820_b19","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1186\/s12967-021-02936-w","article-title":"TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the nci patient-derived models repository","volume":"19","author":"Zhao","year":"2021","journal-title":"J Transl Med"},{"key":"10.1016\/j.artmed.2024.102820_b20","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1186\/1471-2105-12-323","article-title":"RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome","volume":"12","author":"Li","year":"2011","journal-title":"BMC Bioinformatics"},{"year":"2022","series-title":"GDC MAF format v.1.0.0","author":"National Cancer Institute","key":"10.1016\/j.artmed.2024.102820_b21"},{"year":"2016","series-title":"Precision medicine: A guide to genomics in clinical practice","author":"McCarthy","key":"10.1016\/j.artmed.2024.102820_b22"},{"key":"10.1016\/j.artmed.2024.102820_b23","doi-asserted-by":"crossref","DOI":"10.1561\/2200000056","article-title":"An introduction to variational autoencoders","volume":"12","author":"Kingma","year":"2019","journal-title":"Found Trends Mach Learn","ISSN":"https:\/\/id.crossref.org\/issn\/1935-8245","issn-type":"print"},{"issue":"1","key":"10.1016\/j.artmed.2024.102820_b24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13321-017-0235-x","article-title":"Molecular de-novo design through deep reinforcement learning","volume":"9","author":"Olivecrona","year":"2017","journal-title":"J Cheminformat"},{"issue":"D1","key":"10.1016\/j.artmed.2024.102820_b25","doi-asserted-by":"crossref","first-page":"D1100","DOI":"10.1093\/nar\/gkr777","article-title":"Chembl: a large-scale bioactivity database for drug discovery","volume":"40","author":"Gaulton","year":"2012","journal-title":"Nucleic Acids Res"},{"issue":"7553","key":"10.1016\/j.artmed.2024.102820_b26","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.artmed.2024.102820_b27","doi-asserted-by":"crossref","first-page":"D955","DOI":"10.1093\/nar\/gks1111","article-title":"Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells","volume":"41","author":"Yang","year":"2013","journal-title":"Nucleic Acids Res"},{"issue":"4","key":"10.1016\/j.artmed.2024.102820_b28","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1007\/s13244-018-0639-9","article-title":"Convolutional neural networks: an overview and application in radiology","volume":"9","author":"Yamashita","year":"2018","journal-title":"Insights Imaging"},{"key":"10.1016\/j.artmed.2024.102820_b29","unstructured":"Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A System for Large-Scale Machine Learning. In: 12th USeNIX symposium on operating systems design and implementation. 2016, p. 265\u201383."}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724000629?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365724000629?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T15:26:58Z","timestamp":1721316418000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365724000629"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":29,"alternative-id":["S0933365724000629"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102820","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Predicting drug activity against cancer through genomic profiles and SMILES","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2024.102820","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102820"}}