{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:14:19Z","timestamp":1735586059213},"reference-count":82,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.artmed.2023.102617","type":"journal-article","created":{"date-parts":[[2023,6,26]],"date-time":"2023-06-26T21:01:14Z","timestamp":1687813274000},"page":"102617","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["A systematic literature review of machine learning based risk prediction models for diabetic retinopathy progression"],"prefix":"10.1016","volume":"143","author":[{"given":"Tiwalade Modupe","family":"Usman","sequence":"first","affiliation":[]},{"given":"Yakub Kayode","family":"Saheed","sequence":"additional","affiliation":[]},{"given":"Augustine","family":"Nsang","sequence":"additional","affiliation":[]},{"given":"Abel","family":"Ajibesin","sequence":"additional","affiliation":[]},{"given":"Sandip","family":"Rakshit","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.artmed.2023.102617_bb0005","doi-asserted-by":"crossref","first-page":"01","DOI":"10.14302\/issn.2470-0436.jos-16-940","article-title":"Influence of visual impairment on the quality of life: a survey of patients reporting at the low vision centre of the eastern regional hospital of Ghana","volume":"1","author":"Amedo","year":"2016","journal-title":"J Ophthalmic Sci"},{"key":"10.1016\/j.artmed.2023.102617_bb0010","series-title":"Making eye health a population health imperative: vision for tomorrow","author":"Welp","year":"2016"},{"issue":"9","key":"10.1016\/j.artmed.2023.102617_bb0015","doi-asserted-by":"crossref","first-page":"e888","DOI":"10.1016\/S2214-109X(17)30293-0","article-title":"Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis","volume":"5","author":"Bourne","year":"2017","journal-title":"Lancet Glob Health"},{"key":"10.1016\/j.artmed.2023.102617_bb0020","article-title":"Diabetic retinopathy detection through deep learning techniques: a review","volume":"100377","author":"Alyoubi","year":"2020","journal-title":"Inform Med Unlocked"},{"issue":"8","key":"10.1016\/j.artmed.2023.102617_bb0025","doi-asserted-by":"crossref","first-page":"995","DOI":"10.1007\/s40273-019-00800-w","article-title":"Cost effectiveness of treatments for diabetic retinopathy: a systematic literature review","volume":"37","author":"Maniadakis","year":"2019","journal-title":"Pharmacoeconomics"},{"issue":"7","key":"10.1016\/j.artmed.2023.102617_bb0030","doi-asserted-by":"crossref","first-page":"750","DOI":"10.1097\/OPX.0000000000000854","article-title":"Prevalence of diabetic retinopathy in a clinic population from Puerto Rico","volume":"93","author":"Rodriguez","year":"2016","journal-title":"Optom Vis Sci"},{"issue":"4","key":"10.1016\/j.artmed.2023.102617_bb0035","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1159\/000499541","article-title":"Diabetic retinopathy in the context of patients with diabetes","volume":"62","author":"Sim\u00f3-Servat","year":"2019","journal-title":"Ophthalmic Res"},{"issue":"4","key":"10.1016\/j.artmed.2023.102617_bb0040","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1111\/ceo.12696","article-title":"Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review","volume":"44","author":"Ting","year":"2016","journal-title":"Clin Experiment Ophthalmol"},{"key":"10.1016\/j.artmed.2023.102617_bb0045","author":"Koetting"},{"issue":"6","key":"10.1016\/j.artmed.2023.102617_bb0050","doi-asserted-by":"crossref","first-page":"BIO206","DOI":"10.1167\/iovs.17-21780","article-title":"Diabetic retinopathy phenotypes of progression to macular edema: pooled analysis from independent longitudinal studies of up to 2 years\u2019 duration","volume":"58","author":"Cunha-Vaz","year":"2017","journal-title":"Invest Ophthalmol Vis Sci"},{"key":"10.1016\/j.artmed.2023.102617_bb0055","series-title":"Seminars in ophthalmology","first-page":"250","article-title":"Biomarkers for progression in diabetic retinopathy: expanding personalized medicine through integration of AI with electronic health records","volume":"vol. 36, no. 4","author":"Jacoba","year":"2021"},{"issue":"8","key":"10.1016\/j.artmed.2023.102617_bb5000","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1111\/aos.12746","article-title":"Diabetic polyneuropathy and the risk of developing diabetic retinopathy: a nationwide, population-based study","volume":"93","author":"Lin","year":"2015","journal-title":"Acta Ophthalmol"},{"issue":"8","key":"10.1016\/j.artmed.2023.102617_bb0060","doi-asserted-by":"crossref","first-page":"902","DOI":"10.1001\/jama.298.8.902","article-title":"Management of diabetic retinopathy: a systematic review","volume":"298","author":"Mohamed","year":"2007","journal-title":"Jama"},{"issue":"6","key":"10.1016\/j.artmed.2023.102617_bb0065","doi-asserted-by":"crossref","first-page":"1562","DOI":"10.2337\/dc12-0790","article-title":"Predicting development of proliferative diabetic retinopathy","volume":"36","author":"Nwanyanwu","year":"2013","journal-title":"Diabetes Care"},{"key":"10.1016\/j.artmed.2023.102617_bb0070","doi-asserted-by":"crossref","DOI":"10.1155\/2020\/9139713","article-title":"Detection of diabetic retinopathy using bichannel convolutional neural network","volume":"2020","author":"Pao","year":"2020","journal-title":"J Ophthalmol"},{"issue":"6","key":"10.1016\/j.artmed.2023.102617_bb0075","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1097\/APO.0000000000000267","article-title":"The war on diabetic retinopathy: where are we now?","volume":"8","author":"Wong","year":"2019","journal-title":"Asia-Pac J Ophthalmol"},{"key":"10.1016\/j.artmed.2023.102617_bb5035","first-page":"346","article-title":"Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes","author":"Hemingway","year":"2013","journal-title":"Bmj"},{"issue":"5","key":"10.1016\/j.artmed.2023.102617_bb0080","doi-asserted-by":"crossref","first-page":"793","DOI":"10.2337\/dc14-2585","article-title":"Peripheral neuropathy and nerve dysfunction in individuals at high risk for type 2 diabetes: the PROMISE cohort","volume":"38","author":"Lee","year":"2015","journal-title":"Diabetes Care"},{"issue":"9","key":"10.1016\/j.artmed.2023.102617_bb5005","doi-asserted-by":"crossref","first-page":"1286","DOI":"10.1136\/bjophthalmol-2018-313539","article-title":"Validation of a model for the prediction of retinopathy in persons with type 1 diabetes","volume":"105","author":"Schreur","year":"2021","journal-title":"Br J Ophthalmol"},{"issue":"4","key":"10.1016\/j.artmed.2023.102617_bb5010","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1001\/archopht.119.4.547","article-title":"How many steps of progression of diabetic retinopathy are meaningful? The Wisconsin Epidemiologic Study of Diabetic Retinopathy","volume":"119","author":"Klein","year":"2001","journal-title":"Arch Ophthalmol"},{"key":"10.1016\/j.artmed.2023.102617_bb0085","first-page":"2020","article-title":"Changing the focus to the whole patient instead of one oral disease: the concept of individualized prevention","author":"Schmalz","year":"2020","journal-title":"Adv Prev Med"},{"issue":"9","key":"10.1016\/j.artmed.2023.102617_bb0090","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/math8091620","article-title":"Deep neural network for predicting diabetic retinopathy from risk factors","volume":"8","author":"Alfian","year":"2020","journal-title":"Mathematics"},{"issue":"9","key":"10.1016\/j.artmed.2023.102617_bb0095","doi-asserted-by":"crossref","first-page":"1620","DOI":"10.3390\/math8091620","article-title":"Deep neural network for predicting diabetic retinopathy from risk factors","volume":"8","author":"Alfian","year":"2020","journal-title":"Mathematics"},{"issue":"42","key":"10.1016\/j.artmed.2023.102617_bb5015","doi-asserted-by":"crossref","DOI":"10.1097\/MD.0000000000022695","article-title":"Risk factors and prevalence of diabetic retinopathy: a protocol for meta-analysis","volume":"99","author":"Hou","year":"2020","journal-title":"Medicine"},{"issue":"5","key":"10.1016\/j.artmed.2023.102617_bb0100","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.ogla.2020.04.008","article-title":"Artificial intelligence and glaucoma: illuminating the black box","volume":"3","author":"Yousefi","year":"2020","journal-title":"Ophthalmology Glaucoma"},{"key":"10.1016\/j.artmed.2023.102617_bb0105","article-title":"Evaluation of machine learning methods developed for prediction of diabetes complications: a systematic review","volume":"19322968211056917","author":"Tan","year":"2021","journal-title":"J Diabetes Sci Technol"},{"issue":"6","key":"10.1016\/j.artmed.2023.102617_bb0110","article-title":"A systematic literature review of predicting diabetic retinopathy, nephropathy and neuropathy in patients with type 1 diabetes using machine learning","volume":"3","author":"Xu","year":"2020","journal-title":"J Med Artif Intell"},{"issue":"6","key":"10.1016\/j.artmed.2023.102617_bb0115","doi-asserted-by":"crossref","first-page":"1110","DOI":"10.1007\/s00125-020-05134-3","article-title":"Prediction models for development of retinopathy in people with type 2 diabetes: systematic review and external validation in a Dutch primary care setting","volume":"63","author":"Van der Heijden","year":"2020","journal-title":"Diabetologia"},{"issue":"5","key":"10.1016\/j.artmed.2023.102617_bb0120","doi-asserted-by":"crossref","first-page":"702","DOI":"10.1038\/s41433-018-0322-x","article-title":"Prognostic prediction models for diabetic retinopathy progression: a systematic review","volume":"33","author":"Haider","year":"2019","journal-title":"Eye"},{"issue":"7","key":"10.1016\/j.artmed.2023.102617_bb0125","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pmed.1000097","article-title":"Preferred reporting items for systematic reviews and meta-analyses: the prisma statement","volume":"6","author":"Moher","year":"2009","journal-title":"PLoS Med"},{"issue":"10","key":"10.1016\/j.artmed.2023.102617_bb0130","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pmed.1001744","article-title":"Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist","volume":"11","author":"Moons","year":"2014","journal-title":"PLoS Med"},{"key":"10.1016\/j.artmed.2023.102617_bb0135","series-title":"Development and validation of medical record-based logistic regression and machine learning models to diagnose diabetic retinopathy","author":"Li","year":"2023"},{"key":"10.1016\/j.artmed.2023.102617_bb0140","series-title":"Proceedings of the 6th international conference on inventive computation technologies, ICICT 2021","first-page":"1048","article-title":"Performance analysis of diabetic retinopathy prediction using machine learning models","author":"Emon","year":"2021"},{"key":"10.1016\/j.artmed.2023.102617_bb0145","doi-asserted-by":"crossref","first-page":"1351","DOI":"10.1007\/s13246-021-01073-4","article-title":"A novel four-step feature selection technique for diabetic retinopathy grading","volume":"44","author":"Jagan Mohan","year":"2021","journal-title":"Phys Eng Sci Med"},{"issue":"15","key":"10.1016\/j.artmed.2023.102617_bb5020","doi-asserted-by":"crossref","first-page":"20611","DOI":"10.1007\/s11042-022-12492-0","article-title":"An enhanced swarm optimization-based deep neural network for diabetic retinopathy classification in fundus images","volume":"81","author":"Dayana","year":"2022","journal-title":"Multimed Tools Appl"},{"issue":"February","key":"10.1016\/j.artmed.2023.102617_bb0150","first-page":"78","article-title":"Diabetic retinopathy detection using principal component analysis multi-label feature extraction and classification","volume":"4","author":"Usman","year":"2023","journal-title":"Int J Cogn Comput Eng"},{"key":"10.1016\/j.artmed.2023.102617_bb0155","article-title":"Voting classification-based diabetes mellitus prediction using hypertuned machine-learning techniques","volume":"2022","author":"Mushtaq","year":"2022","journal-title":"Mob Inf Syst"},{"key":"10.1016\/j.artmed.2023.102617_bb0160","series-title":"Fusion of machine learning paradigms","article-title":"Diabetic retinopathy detection using transfer and reinforcement learning with effective image preprocessing and data augmentation techniques","author":"Tariq","year":"2023"},{"issue":"3","key":"10.1016\/j.artmed.2023.102617_bb0165","article-title":"An explainable deep learning ensemble model for robust diagnosis of diabetic retinopathy grading","volume":"17","author":"Mohammad Shorfuzzaman","year":"2021","journal-title":"ACM Trans Multimedia Comput Commun Appl"},{"issue":"December 2018","key":"10.1016\/j.artmed.2023.102617_bb0170","article-title":"Deep learning in ophthalmology: the technical and clinical considerations","volume":"72","author":"Ting","year":"2019","journal-title":"Prog Retin Eye Res"},{"key":"10.1016\/j.artmed.2023.102617_bb0175","series-title":"Data science for genomics","first-page":"153","article-title":"Effective dimensionality reduction model with machine learning classification for microarray gene expression data","author":"Saheed","year":"2023"},{"issue":"2","key":"10.1016\/j.artmed.2023.102617_bb0180","first-page":"13","article-title":"Influence of discretization in classification of breast cancer disease","volume":"18","author":"Saheed","year":"2018","journal-title":"Univ Pitesti Sci Bull Electron Comput Sci"},{"issue":"2","key":"10.1016\/j.artmed.2023.102617_bb0185","first-page":"1","article-title":"Comparative evaluation of linear support vector machine and K nearest neighbour algorithm using microarray data on leukemia cancer dataset","volume":"11","author":"Oladejo","year":"2018","journal-title":"Afr J Comp & ICT"},{"issue":"10","key":"10.1016\/j.artmed.2023.102617_bb0190","first-page":"55","article-title":"Application of dimensionality reduction on classification of colon cancer using ICA and K-NN algorithm","volume":"6","author":"Rasheed","year":"2018","journal-title":"An Ser Inform"},{"key":"10.1016\/j.artmed.2023.102617_bb0195","article-title":"The PRISMA 2020 statement: an updated guideline for reporting systematic reviews","volume":"372","author":"Page","year":"2021","journal-title":"BMJ"},{"key":"10.1016\/j.artmed.2023.102617_bb0200","first-page":"56","article-title":"Predicting progression of diabetic retinopathy with the retmarker","author":"Cunha-Vaz","year":"2009","journal-title":"Retina Today"},{"issue":"10","key":"10.1016\/j.artmed.2023.102617_bb0205","doi-asserted-by":"crossref","first-page":"2525","DOI":"10.1007\/s00125-011-2257-7","article-title":"Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy","volume":"54","author":"Aspelund","year":"2011","journal-title":"Diabetologia"},{"issue":"9","key":"10.1016\/j.artmed.2023.102617_bb0210","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1186\/s12859-018-2277-0","article-title":"Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms","volume":"19","author":"Tsao","year":"2018","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.artmed.2023.102617_bb0215","doi-asserted-by":"crossref","DOI":"10.1016\/j.ebiom.2022.104032","article-title":"Precision diagnostic approach to predict 5-year risk for microvascular complications in type 1 diabetes","volume":"80","author":"Al-Sari","year":"2022","journal-title":"EBioMedicine"},{"issue":"1","key":"10.1016\/j.artmed.2023.102617_bb5025","doi-asserted-by":"crossref","first-page":"11862","DOI":"10.1038\/s41598-019-48263-5","article-title":"Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning","volume":"9","author":"Makino","year":"2019","journal-title":"Sci Rep"},{"key":"10.1016\/j.artmed.2023.102617_bb0220","series-title":"2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC)","first-page":"2724","article-title":"Multi-cell multi-task convolutional neural networks for diabetic retinopathy grading","author":"Zhou","year":"2018"},{"issue":"1","key":"10.1016\/j.artmed.2023.102617_bb0225","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41746-019-0172-3","article-title":"Deep learning algorithm predicts diabetic retinopathy progression in individual patients","volume":"2","author":"Arcadu","year":"2019","journal-title":"NPJ Digit Med"},{"key":"10.1016\/j.artmed.2023.102617_bb0230","series-title":"Medical imaging 2017: computer-aided diagnosis","first-page":"417","article-title":"Detection of retinal changes from illumination normalized fundus images using convolutional neural networks","volume":"vol. 10134","author":"Adal","year":"2017"},{"issue":"1","key":"10.1016\/j.artmed.2023.102617_bb0235","doi-asserted-by":"crossref","first-page":"e10","DOI":"10.1016\/S2589-7500(20)30250-8","article-title":"Predicting the risk of developing diabetic retinopathy using deep learning","volume":"3","author":"Bora","year":"2021","journal-title":"Lancet Digit Health"},{"issue":"1","key":"10.1016\/j.artmed.2023.102617_bb0240","first-page":"1","article-title":"Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction","volume":"9","author":"Zhao","year":"2019","journal-title":"Sci Rep"},{"key":"10.1016\/j.artmed.2023.102617_bb0245","series-title":"2019 IEEE international conference on image processing (ICIP)","first-page":"1385","article-title":"Bira-net: bilinear attention net for diabetic retinopathy grading","author":"Zhao","year":"2019"},{"key":"10.1016\/j.artmed.2023.102617_bb0250","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.compbiomed.2017.09.008","article-title":"A new unified framework for the early detection of the progression to diabetic retinopathy from fundus images","volume":"90","author":"Leontidis","year":"2017","journal-title":"Comput Biol Med"},{"key":"10.1016\/j.artmed.2023.102617_bb0255","doi-asserted-by":"crossref","first-page":"9632","DOI":"10.1109\/ACCESS.2018.2808160","article-title":"Automatic analysis of microaneurysms turnover to diagnose the progression of diabetic retinopathy","volume":"6","author":"Xu","year":"2018","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.artmed.2023.102617_bb0260","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0179790","article-title":"Applying artificial intelligence to disease staging: deep learning for improved staging of diabetic retinopathy","volume":"12","author":"Takahashi","year":"2017","journal-title":"PLoS One"},{"key":"10.1016\/j.artmed.2023.102617_bb0265","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijmedinf.2019.07.005","article-title":"Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification","volume":"132","author":"Hua","year":"2019","journal-title":"Int J Med Inform"},{"issue":"2","key":"10.1016\/j.artmed.2023.102617_bb0270","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1038\/s42256-020-0154-9","article-title":"Deep-learning-based prediction of late age-related macular degeneration progression","volume":"2","author":"Yan","year":"2020","journal-title":"Nat Mach Intell"},{"issue":"4","key":"10.1016\/j.artmed.2023.102617_bb0275","doi-asserted-by":"crossref","first-page":"6171","DOI":"10.1007\/s11042-020-10025-1","article-title":"Multi-input 2-dimensional deep belief network: diabetic retinopathy grading as case study","volume":"80","author":"Tehrani","year":"2021","journal-title":"Multimed Tools Appl"},{"key":"10.1016\/j.artmed.2023.102617_bb0280","series-title":"Annual conference on medical image understanding and analysis","first-page":"517","article-title":"End-to-end deep learning vector autoregressive prognostic models to predict disease progression with uneven time intervals","author":"Bridge","year":"2021"},{"key":"10.1016\/j.artmed.2023.102617_bb0285","series-title":"Diabetic retinopathy","first-page":"547","author":"Klein","year":"2012"},{"issue":"6","key":"10.1016\/j.artmed.2023.102617_bb0290","doi-asserted-by":"crossref","first-page":"BIO200","DOI":"10.1167\/iovs.17-21699","article-title":"Retinal vessel geometry and the incidence and progression of diabetic retinopathy","volume":"58","author":"Lim","year":"2017","journal-title":"Invest Ophthalmol Vis Sci"},{"issue":"2","key":"10.1016\/j.artmed.2023.102617_bb0295","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1136\/bjophthalmol-2018-311887","article-title":"Microaneurysm turnover is a predictor of diabetic retinopathy progression","volume":"103","author":"Pappuru","year":"2019","journal-title":"Br J Ophthalmol"},{"issue":"1","key":"10.1016\/j.artmed.2023.102617_bb0300","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-75416-8","article-title":"Microvascular impairment as a biomarker of diabetic retinopathy progression in the long-term follow up in type 1 diabetes","volume":"10","author":"Scarinci","year":"2020","journal-title":"Sci Rep"},{"issue":"12","key":"10.1016\/j.artmed.2023.102617_bb0305","doi-asserted-by":"crossref","first-page":"1675","DOI":"10.1016\/j.ophtha.2019.06.016","article-title":"OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: a prospective study","volume":"126","author":"Sun","year":"2019","journal-title":"Ophthalmology"},{"key":"10.1016\/j.artmed.2023.102617_bb0310","series-title":"Medical imaging 2012: computer-aided diagnosis","first-page":"771","article-title":"Retinal image enhancement and registration for the evaluation of longitudinal changes","volume":"vol. 8315","author":"Xiao","year":"2012"},{"key":"10.1016\/j.artmed.2023.102617_bb5030","series-title":"In International Journal of Computer Applications","first-page":"26","article-title":"Auto-detection of longitudinal changes in retinal images for monitoring diabetic retinopathy","volume":"77","author":"Godse","year":"2013"},{"issue":"2","key":"10.1016\/j.artmed.2023.102617_bb0315","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1167\/tvst.9.2.44","article-title":"Evidence based prediction and progression monitoring on retinal images from three nations","volume":"9","author":"Al Turk","year":"2020","journal-title":"Transl Vis Sci Technol"},{"issue":"13","key":"10.1016\/j.artmed.2023.102617_bb0320","doi-asserted-by":"crossref","first-page":"1227","DOI":"10.1056\/NEJMra1005073","article-title":"Diabetic retinopathy","volume":"366","author":"Antonetti","year":"2012","journal-title":"N Engl J Med"},{"issue":"1","key":"10.1016\/j.artmed.2023.102617_bb0325","doi-asserted-by":"crossref","DOI":"10.1136\/bmjopen-2016-013199","article-title":"Prevalence of diabetic retinopathy among 13473 patients with diabetes mellitus in China: a cross-sectional epidemiological survey in six provinces","volume":"7","author":"Liu","year":"2017","journal-title":"BMJ Open"},{"issue":"7","key":"10.1016\/j.artmed.2023.102617_bb0330","doi-asserted-by":"crossref","first-page":"1780","DOI":"10.2337\/db10-0110","article-title":"Profile of lipid and protein autacoids in diabetic vitreous correlates with the progression of diabetic retinopathy","volume":"59","author":"Schwartzman","year":"2010","journal-title":"Diabetes"},{"issue":"1","key":"10.1016\/j.artmed.2023.102617_bb0335","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.jdiacomp.2017.09.002","article-title":"Ophthalmic and clinical factors that predict four-year development and worsening of diabetic retinopathy in type 1 diabetes","volume":"32","author":"Srinivasan","year":"2018","journal-title":"J Diabetes Complications"},{"issue":"5","key":"10.1016\/j.artmed.2023.102617_bb0340","doi-asserted-by":"crossref","first-page":"872","DOI":"10.1007\/s00125-022-05661-1","article-title":"Urinary albumin\/creatinine ratio tertiles predict risk of diabetic retinopathy progression: a natural history study from the Adolescent Cardio-Renal Intervention Trial (AdDIT) observational cohort","volume":"65","author":"Benitez-Aguirre","year":"2022","journal-title":"Diabetologia"},{"key":"10.1016\/j.artmed.2023.102617_bb0345","first-page":"2021","article-title":"Early microglial changes associated with diabetic retinopathy in rats with streptozotocin-induced diabetes","author":"Park","year":"2021","journal-title":"J Diabetes Res"},{"issue":"6","key":"10.1016\/j.artmed.2023.102617_bb0350","doi-asserted-by":"crossref","first-page":"513","DOI":"10.4093\/dmj.2018.0006","article-title":"Association between serum cystatin C and vascular complications in type 2 diabetes mellitus without nephropathy","volume":"42","author":"Kim","year":"2018","journal-title":"Diabetes Metab J"},{"issue":"3","key":"10.1016\/j.artmed.2023.102617_bb0355","doi-asserted-by":"crossref","first-page":"745","DOI":"10.1111\/jdi.12953","article-title":"Discordance in risk factors for the progression of diabetic retinopathy and diabetic nephropathy in patients with type 2 diabetes mellitus","volume":"10","author":"Song","year":"2019","journal-title":"J Diabetes Investig"},{"issue":"7","key":"10.1016\/j.artmed.2023.102617_bb0360","first-page":"977","article-title":"Measurement of blood-retinal barrier permeability: a reproducibility study in normal eyes","volume":"26","author":"Chahal","year":"1985","journal-title":"Invest Ophthalmol Vis Sci"},{"issue":"9","key":"10.1016\/j.artmed.2023.102617_bb0365","doi-asserted-by":"crossref","first-page":"1438","DOI":"10.1016\/S0161-6420(96)30486-7","article-title":"Cigarette smoking and ten-year progression of diabetic retinopathy","volume":"103","author":"Moss","year":"1996","journal-title":"Ophthalmology"},{"key":"10.1016\/j.artmed.2023.102617_bb0370","doi-asserted-by":"crossref","first-page":"2176","DOI":"10.2337\/db07-1495","article-title":"Heritability of proliferative diabetic retinopathy","volume":"57","author":"Hietala","year":"2008","journal-title":"Diabetes"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365723001318?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365723001318?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,15]],"date-time":"2023-09-15T19:05:31Z","timestamp":1694804731000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365723001318"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":82,"alternative-id":["S0933365723001318"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2023.102617","relation":{},"ISSN":["0933-3657"],"issn-type":[{"value":"0933-3657","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A systematic literature review of machine learning based risk prediction models for diabetic retinopathy progression","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2023.102617","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102617"}}