{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T16:37:22Z","timestamp":1742402242882},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1016\/j.artmed.2023.102489","type":"journal-article","created":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T02:59:49Z","timestamp":1673578789000},"page":"102489","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["A novel temporal generative adversarial network for electrocardiography anomaly detection"],"prefix":"10.1016","volume":"136","author":[{"given":"Jing","family":"Qin","sequence":"first","affiliation":[]},{"given":"Fujie","family":"Gao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1194-8203","authenticated-orcid":false,"given":"Zumin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"David C.","family":"Wong","sequence":"additional","affiliation":[]},{"given":"Zhibin","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Samuel D.","family":"Relton","sequence":"additional","affiliation":[]},{"given":"Hui","family":"Fang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.artmed.2023.102489_b1","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1038\/s41591-018-0268-3","article-title":"Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network","volume":"25","author":"Hannun","year":"2019","journal-title":"Nat Med"},{"key":"10.1016\/j.artmed.2023.102489_b2","unstructured":"Woo\u00a0S-M, Lee\u00a0H-J, Kang\u00a0B-J, Ban\u00a0S-W. ECG signal monitoring using one-class support vector machine. In: Proceedings of the 9th WSEAS international conference on applications of electrical engineering. 2010, p. 23\u20135."},{"issue":"3","key":"10.1016\/j.artmed.2023.102489_b3","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1109\/TBME.2015.2468589","article-title":"Real-time patient-specific ECG classification by 1-D convolutional neural networks","volume":"63","author":"Kiranyaz","year":"2016","journal-title":"IEEE Trans Biomed Eng"},{"issue":"4","key":"10.1016\/j.artmed.2023.102489_b4","doi-asserted-by":"crossref","first-page":"1574","DOI":"10.1109\/JBHI.2018.2871510","article-title":"Towards end-to-end ECG classification with raw signal extraction and deep neural networks","volume":"23","author":"Xu","year":"2018","journal-title":"IEEE J Biomed Health Inf"},{"issue":"03","key":"10.1016\/j.artmed.2023.102489_b5","doi-asserted-by":"crossref","DOI":"10.1142\/S0219519419500040","article-title":"A novel two-lead arrhythmia classification system based on CNN and LSTM","volume":"19","author":"Chu","year":"2019","journal-title":"J Mech Med Biol"},{"key":"10.1016\/j.artmed.2023.102489_b6","series-title":"2020 computing in cardiology","first-page":"1","article-title":"Adaptive lead weighted resnet trained with different duration signals for classifying 12-lead ECGs","author":"Zhao","year":"2020"},{"key":"10.1016\/j.artmed.2023.102489_b7","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.eswa.2018.12.037","article-title":"A robust deep convolutional neural network with batch-weighted loss for heartbeat classification","volume":"122","author":"Sellami","year":"2019","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.artmed.2023.102489_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102192","article-title":"Deepmi: Deep multi-lead ECG fusion for identifying myocardial infarction and its occurrence-time","volume":"121","author":"Tadesse","year":"2021","journal-title":"Artif Intell Med"},{"key":"10.1016\/j.artmed.2023.102489_b9","doi-asserted-by":"crossref","unstructured":"Golany\u00a0T, Radinsky\u00a0K. Pgans: Personalized generative adversarial networks for ECG synthesis to improve patient-specific deep ECG classification. In: Proceedings of the AAAI conference on artificial intelligence, vol. 33. 2019, p. 557\u201364.","DOI":"10.1609\/aaai.v33i01.3301557"},{"key":"10.1016\/j.artmed.2023.102489_b10","series-title":"Anomaly detection in univariate time-series: A survey on the state-of-the-art","author":"Braei","year":"2020"},{"key":"10.1016\/j.artmed.2023.102489_b11","doi-asserted-by":"crossref","first-page":"108664","DOI":"10.1109\/ACCESS.2020.3000638","article-title":"Decision boundary-based anomaly detection model using improved anogan from ECG data","volume":"8","author":"Shin","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.artmed.2023.102489_b12","series-title":"One-class classification: A survey, arxiv preprint","author":"Perera","year":"2021"},{"issue":"5","key":"10.1016\/j.artmed.2023.102489_b13","doi-asserted-by":"crossref","first-page":"1461","DOI":"10.3390\/s20051461","article-title":"A survey of heart anomaly detection using ambulatory electrocardiogram (ECG)","volume":"20","author":"Li","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.artmed.2023.102489_b14","doi-asserted-by":"crossref","unstructured":"Zhou\u00a0B, Liu\u00a0S, Hooi\u00a0B, Cheng\u00a0X, Ye\u00a0J. Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI. 2019, p. 4433\u20139.","DOI":"10.24963\/ijcai.2019\/616"},{"issue":"5","key":"10.1016\/j.artmed.2023.102489_b15","doi-asserted-by":"crossref","first-page":"756","DOI":"10.1109\/JPROC.2021.3052449","article-title":"A unifying review of deep and shallow anomaly detection","volume":"109","author":"Ruff","year":"2021","journal-title":"Proc IEEE"},{"key":"10.1016\/j.artmed.2023.102489_b16","series-title":"International conference on information processing in medical imaging","first-page":"146","article-title":"Unsupervised anomaly detection with generative adversarial networks to guide marker discovery","author":"Schlegl","year":"2017"},{"issue":"7","key":"10.1016\/j.artmed.2023.102489_b17","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1109\/TBME.2002.1010858","article-title":"Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification","volume":"49","author":"Owis","year":"2002","journal-title":"IEEE Trans Biomed Eng"},{"issue":"8","key":"10.1016\/j.artmed.2023.102489_b18","doi-asserted-by":"crossref","first-page":"2168","DOI":"10.1109\/TBME.2011.2113395","article-title":"Optimization of ECG classification by means of feature selection","volume":"58","author":"Mar","year":"2011","journal-title":"IEEE Trans Biomed Eng"},{"issue":"3","key":"10.1016\/j.artmed.2023.102489_b19","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/51.932724","article-title":"The impact of the MIT-BIH arrhythmia database","volume":"20","author":"Moody","year":"2001","journal-title":"IEEE Eng Med Biol Mag"},{"key":"10.1016\/j.artmed.2023.102489_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102059","article-title":"Cefes: A CNN explainable framework for ECG signals","volume":"115","author":"Maweu","year":"2021","journal-title":"Artif Intell Med"},{"key":"10.1016\/j.artmed.2023.102489_b21","series-title":"ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing","first-page":"1308","article-title":"Inter-and intra-patient ECG heartbeat classification for arrhythmia detection: A sequence to sequence deep learning approach","author":"Mousavi","year":"2019"},{"key":"10.1016\/j.artmed.2023.102489_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.101856","article-title":"ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network","volume":"106","author":"Zhang","year":"2020","journal-title":"Artif Intell Med"},{"issue":"12","key":"10.1016\/j.artmed.2023.102489_b23","article-title":"Classification of 12-lead ECGs: The physionet\/computing in cardiology challenge 2020","volume":"41","author":"Alday","year":"2020","journal-title":"Physiol Meas"},{"key":"10.1016\/j.artmed.2023.102489_b24","series-title":"2021 computing in cardiology, vol. 48","first-page":"1","article-title":"Deep discriminative domain generalization with adversarial feature learning for classifying ECG signals","author":"Shang","year":"2021"},{"issue":"8","key":"10.1016\/j.artmed.2023.102489_b25","first-page":"1517","article-title":"Generative adversarial active learning for unsupervised outlier detection","volume":"32","author":"Liu","year":"2019","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"10.1016\/j.artmed.2023.102489_b26","series-title":"Proceedings 2001 international conference on image processing (Cat. No. 01CH37205), vol. 1","first-page":"34","article-title":"One-class SVM for learning in image retrieval","author":"Chen","year":"2001"},{"key":"10.1016\/j.artmed.2023.102489_b27","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1016\/j.patcog.2018.03.022","article-title":"Conditional classifiers and boosted conditional Gaussian mixture model for novelty detection","volume":"81","author":"Mohammadi-Ghazi","year":"2018","journal-title":"Pattern Recognit"},{"issue":"1","key":"10.1016\/j.artmed.2023.102489_b28","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1080\/24709360.2017.1396742","article-title":"A tutorial on kernel density estimation and recent advances","volume":"1","author":"Chen","year":"2017","journal-title":"Biostat Epidemiol"},{"key":"10.1016\/j.artmed.2023.102489_b29","series-title":"Advances in neural information processing systems, vol. 27","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.artmed.2023.102489_b30","series-title":"Unsupervised representation learning with deep convolutional generative adversarial networks","author":"Radford","year":"2015"},{"key":"10.1016\/j.artmed.2023.102489_b31","series-title":"Advances in neural information processing systems, vol. 29","article-title":"Improved techniques for training gans","author":"Salimans","year":"2016"},{"key":"10.1016\/j.artmed.2023.102489_b32","series-title":"On distinguishability criteria for estimating generative models","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.artmed.2023.102489_b33","series-title":"International conference image analysis and recognition","first-page":"43","article-title":"Outlier detection in non-intrusive ECG biometric system","author":"Louren\u00e7o","year":"2013"},{"issue":"6","key":"10.1016\/j.artmed.2023.102489_b34","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1049\/el:20000451","article-title":"Denoising by optimal fuzzy thresholding in wavelet domain","volume":"36","author":"Shark","year":"2000","journal-title":"Electron Lett"},{"issue":"1","key":"10.1016\/j.artmed.2023.102489_b35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-017-09837-3","article-title":"Inter-patient ECG heartbeat classification with temporal VCG optimized by PSO","volume":"7","author":"Garcia","year":"2017","journal-title":"Sci Rep"},{"key":"10.1016\/j.artmed.2023.102489_b36","series-title":"Asian conference on computer vision","first-page":"622","article-title":"Ganomaly: Semi-supervised anomaly detection via adversarial training","author":"Akcay","year":"2018"},{"key":"10.1016\/j.artmed.2023.102489_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2019.101819","article-title":"Automated arrhythmia classification based on a combination network of CNN and LSTM","volume":"57","author":"Chen","year":"2020","journal-title":"Biomed Signal Process Control"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365723000039?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365723000039?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,17]],"date-time":"2023-03-17T04:21:10Z","timestamp":1679026870000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365723000039"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":37,"alternative-id":["S0933365723000039"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2023.102489","relation":{},"ISSN":["0933-3657"],"issn-type":[{"value":"0933-3657","type":"print"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel temporal generative adversarial network for electrocardiography anomaly detection","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2023.102489","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102489"}}