{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:15:52Z","timestamp":1740118552062,"version":"3.37.3"},"reference-count":25,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,4,21]],"date-time":"2021-04-21T00:00:00Z","timestamp":1618963200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"publisher","award":["20170621408"],"id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.artmed.2021.102080","type":"journal-article","created":{"date-parts":[[2021,4,22]],"date-time":"2021-04-22T23:08:03Z","timestamp":1619132883000},"page":"102080","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Explaining heterogeneity of individual treatment causal effects by subgroup discovery: An observational case study in antibiotics treatment of acute rhino-sinusitis"],"prefix":"10.1016","volume":"116","author":[{"given":"W.","family":"Qi","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4324-7954","authenticated-orcid":false,"given":"A.","family":"Abu-Hanna","sequence":"additional","affiliation":[]},{"given":"T.E.M.","family":"van Esch","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0166-6897","authenticated-orcid":false,"given":"D.","family":"de Beurs","sequence":"additional","affiliation":[]},{"given":"Y.","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7943-5274","authenticated-orcid":false,"given":"L.E.","family":"Flinterman","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4591-9646","authenticated-orcid":false,"given":"M.C.","family":"Schut","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7733","key":"10.1016\/j.artmed.2021.102080_bib0005","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1038\/d41586-018-07535-2","article-title":"Statistical pitfalls of personalized medicine","volume":"563","author":"Senn","year":"2018","journal-title":"Nature"},{"issue":"2","key":"10.1016\/j.artmed.2021.102080_bib0010","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1001\/jama.2014.4364","article-title":"Can the learning health care system be educated with observational data?","volume":"312","author":"Dahabreh","year":"2014","journal-title":"JAMA"},{"issue":"396","key":"10.1016\/j.artmed.2021.102080_bib0015","doi-asserted-by":"crossref","first-page":"945","DOI":"10.1080\/01621459.1986.10478354","article-title":"Statistics and causal inference","volume":"81","author":"Holland","year":"1986","journal-title":"J Am Stat Assoc"},{"issue":"469","key":"10.1016\/j.artmed.2021.102080_bib0020","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1198\/016214504000001880","article-title":"Causal inference using potential outcomes: design, modeling, decisions","volume":"100","author":"Rubin","year":"2005","journal-title":"J Am Stat Assoc"},{"issue":"1","key":"10.1016\/j.artmed.2021.102080_bib0025","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1080\/10618600.2017.1356325","article-title":"Estimating individual treatment effect in observational data using random forest methods","volume":"27","author":"Lu","year":"2018","journal-title":"J Comput Graph Stat"},{"issue":"24","key":"10.1016\/j.artmed.2021.102080_bib0030","doi-asserted-by":"crossref","first-page":"2867","DOI":"10.1002\/sim.4322","article-title":"Subgroup identification from randomized clinical trial data","volume":"30","author":"Foster","year":"2011","journal-title":"Stat Med"},{"issue":"1","key":"10.1016\/j.artmed.2021.102080_bib0035","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach Learn"},{"issue":"1","key":"10.1016\/j.artmed.2021.102080_bib0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13040-014-0028-y","article-title":"Synthetic learning machines","volume":"7","author":"Ishwaran","year":"2014","journal-title":"BioData Min"},{"issue":"8","key":"10.1016\/j.artmed.2021.102080_bib0045","doi-asserted-by":"crossref","first-page":"818","DOI":"10.1016\/j.jclinepi.2013.02.009","article-title":"A framework for the analysis of heterogeneity of treatment effect in patient-centered outcomes research","volume":"66","author":"Varadhan","year":"2013","journal-title":"J Clin Epidemiol"},{"year":"2013","series-title":"Estimation and reporting of heterogeneity of treatment effects, in developing a protocol for observational comparative effectiveness research: a user\u2019s guide","author":"Varadhan","key":"10.1016\/j.artmed.2021.102080_bib0050"},{"issue":"3","key":"10.1016\/j.artmed.2021.102080_bib0055","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1007\/s10115-010-0356-2","article-title":"An overview on subgroup discovery: foundations and applications","volume":"29","author":"Herrera","year":"2011","journal-title":"Knowl Inf Syst"},{"issue":"12","key":"10.1016\/j.artmed.2021.102080_bib0060","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1093\/aje\/kwj149","article-title":"Variable selection for propensity score models","volume":"163","author":"Brookhart","year":"2006","journal-title":"Am J Epidemiol"},{"issue":"2","key":"10.1016\/j.artmed.2021.102080_bib0065","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1023\/A:1008894516817","article-title":"Bump hunting in high-dimensional data","volume":"9","author":"Friedman","year":"1999","journal-title":"Stat Comput"},{"key":"10.1016\/j.artmed.2021.102080_bib0070","doi-asserted-by":"crossref","first-page":"9","DOI":"10.2147\/PPA.S147616","article-title":"Is there a conflict between general practitioners applying guidelines for antibiotic prescribing and including their patients\u2019 preferences?","volume":"12","author":"Brabers","year":"2017","journal-title":"Patient Prefer Adherence"},{"year":"1987","series-title":"ICPC, international classification of primary care","author":"Lamberts","key":"10.1016\/j.artmed.2021.102080_bib0075"},{"issue":"10","key":"10.1016\/j.artmed.2021.102080_bib0080","first-page":"537","article-title":"NHG-standaard acute rhinosinusitis (derde herziening)","volume":"57","author":"Venekamp","year":"2014","journal-title":"Huisarts Wet"},{"issue":"5","key":"10.1016\/j.artmed.2021.102080_bib0085","doi-asserted-by":"crossref","first-page":"1338","DOI":"10.1016\/j.csda.2004.11.015","article-title":"Responder identification in clinical trials with censored data","volume":"50","author":"Kehl","year":"2006","journal-title":"Comput Stat Data Anal"},{"issue":"2","key":"10.1016\/j.artmed.2021.102080_bib0090","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1002\/sim.6343","article-title":"A PRIM approach to predictive-signature development for patient stratification","volume":"34","author":"Chen","year":"2015","journal-title":"Stat Med"},{"issue":"6","key":"10.1016\/j.artmed.2021.102080_bib0095","first-page":"480","article-title":"A subgroup discovery approach for scrutinizing blood glucose management guidelines by the identification of hyperglycemia determinants in ICU patients","volume":"47","author":"Nannings","year":"2008","journal-title":"Methods Inf Med"},{"issue":"4","key":"10.1016\/j.artmed.2021.102080_bib0100","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1016\/j.ijmedinf.2007.06.007","article-title":"Applying PRIM (Patient Rule Induction Method) and logistic regression for selecting high-risk subgroups in very elderly ICU patients","volume":"77","author":"Nannings","year":"2008","journal-title":"Int J Med Inform"},{"issue":"5","key":"10.1016\/j.artmed.2021.102080_bib0105","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1016\/j.jbi.2010.05.009","article-title":"PRIM versus CART in subgroup discovery: when patience is harmful","volume":"43","author":"Abu-Hanna","year":"2010","journal-title":"J Biomed Inform"},{"issue":"1","key":"10.1016\/j.artmed.2021.102080_bib0110","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1093\/biostatistics\/kxq047","article-title":"Adaptive index models for marker-based risk stratification","volume":"12","author":"Tian","year":"2011","journal-title":"Biostatistics"},{"issue":"6","key":"10.1016\/j.artmed.2021.102080_bib0115","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/S0895-4356(00)00344-9","article-title":"The use of classification and regression trees in clinical epidemiology","volume":"54","author":"Marshall","year":"2001","journal-title":"J Clin Epidemiol"},{"year":"2019","series-title":"Estimating treatment effects with causal forests: an application","author":"Athey","key":"10.1016\/j.artmed.2021.102080_bib0120"},{"issue":"27","key":"10.1016\/j.artmed.2021.102080_bib0125","doi-asserted-by":"crossref","first-page":"7353","DOI":"10.1073\/pnas.1510489113","article-title":"Recursive partitioning for heterogeneous causal effects","volume":"113","author":"Athey","year":"2016","journal-title":"Proc Natl Acad Sci U S A"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365721000737?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365721000737?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T08:34:05Z","timestamp":1630485245000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365721000737"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":25,"alternative-id":["S0933365721000737"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2021.102080","relation":{},"ISSN":["0933-3657"],"issn-type":[{"type":"print","value":"0933-3657"}],"subject":[],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Explaining heterogeneity of individual treatment causal effects by subgroup discovery: An observational case study in antibiotics treatment of acute rhino-sinusitis","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2021.102080","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102080"}}