{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T14:59:14Z","timestamp":1725807554597},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003407","name":"Ministero dell\u2019Istruzione, dell\u2019Universit\u00e0 e della Ricerca","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003407","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2021,1]]},"DOI":"10.1016\/j.artmed.2020.101984","type":"journal-article","created":{"date-parts":[[2020,11,10]],"date-time":"2020-11-10T02:30:52Z","timestamp":1604975452000},"page":"101984","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":43,"special_numbering":"C","title":["Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: Performance vs. interpretability issues"],"prefix":"10.1016","volume":"111","author":[{"given":"A.","family":"Parziale","sequence":"first","affiliation":[]},{"given":"R.","family":"Senatore","sequence":"additional","affiliation":[]},{"given":"A.","family":"Della Cioppa","sequence":"additional","affiliation":[]},{"given":"A.","family":"Marcelli","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9","key":"10.1016\/j.artmed.2020.101984_bib0005","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1109\/MC.2018.3620965","article-title":"Toward human-understandable, explainable AI","volume":"51","author":"Hagras","year":"2018","journal-title":"Computer"},{"key":"10.1016\/j.artmed.2020.101984_bib0010","series-title":"Towards a rigorous science of interpretable machine learning","author":"Doshi-Velez","year":"2017"},{"key":"10.1016\/j.artmed.2020.101984_bib0015","doi-asserted-by":"crossref","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","article-title":"Peeking inside the black-box: a survey on explainable artificial intelligence (XAI)","volume":"6","author":"Adadi","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.artmed.2020.101984_bib0020","series-title":"What does explainable AI really mean? A new conceptualization of perspectives","author":"Doran","year":"2017"},{"issue":"9","key":"10.1016\/j.artmed.2020.101984_bib0025","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/MC.2018.3620973","article-title":"Toward anthropomorphic machine learning","volume":"51","author":"Angelov","year":"2018","journal-title":"Computer"},{"issue":"5","key":"10.1016\/j.artmed.2020.101984_bib0030","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1007\/s12264-017-0174-6","article-title":"Can biomarkers help the early diagnosis of Parkinson\u2019s disease?","volume":"33","author":"Le","year":"2017","journal-title":"Neurosci Bull"},{"issue":"2","key":"10.1016\/j.artmed.2020.101984_bib0035","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1007\/s12264-019-00433-1","article-title":"Biomarkers for parkinson\u2019s disease: how good are they?","volume":"36","author":"Li","year":"2020","journal-title":"Neurosci Bull"},{"issue":"1","key":"10.1016\/j.artmed.2020.101984_bib0040","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1038\/s41531-017-0039-8","article-title":"Optimizing olfactory testing for the diagnosis of Parkinson\u2019s disease: item analysis of the university of pennsylvania smell identification test","volume":"4","author":"Morley","year":"2018","journal-title":"NPJ Parkinson\u2019s Dis"},{"key":"10.1016\/j.artmed.2020.101984_bib0045","first-page":"1","article-title":"Methods for detecting toxic \u03b1-synuclein species as a biomarker for parkinson's disease","author":"O\u2019Hara","year":"2020","journal-title":"Crit. Rev. Clin. Lab. Sci."},{"key":"10.1016\/j.artmed.2020.101984_bib0050","doi-asserted-by":"crossref","first-page":"1388","DOI":"10.3389\/fneur.2019.01388","article-title":"Plasma and serum alpha-synuclein as a biomarker of diagnosis in patients with Parkinson\u2019s disease","volume":"10","author":"Chang","year":"2020","journal-title":"Front Neurol"},{"issue":"4","key":"10.1016\/j.artmed.2020.101984_bib0055","doi-asserted-by":"crossref","DOI":"10.1097\/WCO.0b013e3283633741","article-title":"Recent developments in biomarkers in Parkinson disease","volume":"26","author":"Schapira","year":"2013","journal-title":"Curr Opin Neurol"},{"issue":"3","key":"10.1016\/j.artmed.2020.101984_bib0060","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1007\/s00221-009-1925-z","article-title":"Hypometria and bradykinesia during drawing movements in individuals with Parkinson\u2019s disease","volume":"197","author":"Broderick","year":"2009","journal-title":"Exp Brain Res"},{"issue":"11","key":"10.1016\/j.artmed.2020.101984_bib0065","doi-asserted-by":"crossref","first-page":"1502","DOI":"10.1136\/jnnp.74.11.1502","article-title":"Parkinson\u2019s disease patients undershoot target size in handwriting and similar tasks","volume":"74","author":"Van Gemmert","year":"2003","journal-title":"J Neurol Neurosurg Psychiatry"},{"key":"10.1016\/j.artmed.2020.101984_bib0070","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.humov.2018.04.007","article-title":"A paradigm for emulating the early learning stage of handwriting: performance comparison between healthy controls and Parkinson\u2019s disease patients in drawing loop shapes","volume":"65","author":"Senatore","year":"2019","journal-title":"Hum Mov Sci"},{"issue":"146","key":"10.1016\/j.artmed.2020.101984_bib0075","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1006\/exnr.1997.6507","article-title":"Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control","volume":"146","author":"Teulings","year":"1997","journal-title":"Exp Neurol"},{"issue":"2\u20133","key":"10.1016\/j.artmed.2020.101984_bib0080","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1016\/0167-9457(91)90010-U","article-title":"Control of stroke size, peak acceleration, and stroke duration in Parkinsonian handwriting","volume":"10","author":"Teulings","year":"1991","journal-title":"Hum Mov Sci"},{"key":"10.1016\/j.artmed.2020.101984_bib0085","first-page":"655","article-title":"A neural scheme for procedural motor learning of handwriting","author":"Senatore","year":"2012","journal-title":"Proceedings \u2013 international conference on frontiers in handwriting recognition"},{"key":"10.1016\/j.artmed.2020.101984_bib0090","series-title":"Parkinson\u2019s disease: clinical features and diagnosis","author":"Jankovic","year":"2008"},{"key":"10.1016\/j.artmed.2020.101984_bib0095","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.patcog.2017.03.019","article-title":"Temporal evolution in synthetic handwriting","volume":"68","author":"Carmona-Duarte","year":"2017","journal-title":"Pattern Recogn"},{"key":"10.1016\/j.artmed.2020.101984_bib0100","first-page":"6","article-title":"Some observations on handwriting from a motor learning perspective","author":"Marcelli","year":"2013","journal-title":"CEUR workshop proceedings, vol. 1022"},{"key":"10.1016\/j.artmed.2020.101984_bib0105","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1109\/ICFHR.2010.21","article-title":"Reading cursive handwriting","author":"De Stefano","year":"2010","journal-title":"Proceedings \u2013 12th international conference on frontiers in handwriting recognition, ICFHR 2010"},{"issue":"10, 247","key":"10.1016\/j.artmed.2020.101984_bib0110","article-title":"dynamic handwriting analysis for supporting earlier Parkinson\u2019s disease diagnosis","volume":"9","author":"Impedovo","year":"2018","journal-title":"Information"},{"key":"10.1016\/j.artmed.2020.101984_bib0115","doi-asserted-by":"crossref","DOI":"10.1002\/mdc3.12552","article-title":"Handwriting analysis in Parkinson\u2019s disease: current status and future directions","author":"Thomas","year":"2017","journal-title":"Mov Disord Clin Pract"},{"key":"10.1016\/j.artmed.2020.101984_bib0120","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.artmed.2016.01.004","article-title":"Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson\u2019s disease","volume":"67","author":"Drot\u00e1r","year":"2016","journal-title":"Artif Intell Med"},{"key":"10.1016\/j.artmed.2020.101984_bib0125","doi-asserted-by":"crossref","first-page":"650","DOI":"10.1007\/978-3-319-95933-7_74","article-title":"A model-free computer-assisted handwriting analysis exploiting optimal topology ANNs on biometric signals in Parkinson\u2019s disease research","author":"Bevilacqua","year":"2018","journal-title":"Lecture notes in computer science"},{"key":"10.1016\/j.artmed.2020.101984_bib0130","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.cmpb.2016.08.005","article-title":"A new computer vision-based approach to aid the diagnosis of Parkinson\u2019s disease","author":"Pereira","year":"2016","journal-title":"Comput Methods Programs Biomed"},{"key":"10.1016\/j.artmed.2020.101984_bib0135","doi-asserted-by":"crossref","DOI":"10.1155\/2018\/7613282","article-title":"A new approach to diagnose Parkinson\u2019s disease using a structural cooccurrence matrix for a similarity analysis","author":"Souza","year":"2018","journal-title":"Comput Intell Neurosci"},{"key":"10.1016\/j.artmed.2020.101984_bib0140","series-title":"Image analysis and processing \u2013 ICIAP 2019","first-page":"196","article-title":"A decision tree for automatic diagnosis of Parkinson\u2019s disease from offline drawing samples: Experiments and findings","author":"Parziale","year":"2019"},{"key":"10.1016\/j.artmed.2020.101984_bib0145","series-title":"Cartesian genetic programming, natural computing series","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-642-17310-3","author":"Miller","year":"2011"},{"key":"10.1016\/j.artmed.2020.101984_bib0150","series-title":"Proceedings of the companion publication of the 2015 annual conference on genetic and evolutionary computation","first-page":"651","article-title":"Medical Applications of Evolutionary Computation","author":"Smith","year":"2015"},{"issue":"1","key":"10.1016\/j.artmed.2020.101984_bib0155","doi-asserted-by":"crossref","DOI":"10.3390\/info10010030","article-title":"Automatic diagnosis of neurodegenerative diseases: an evolutionary approach for facing the interpretability problem","volume":"10","author":"Senatore","year":"2019","journal-title":"Information"},{"key":"10.1016\/j.artmed.2020.101984_bib0160","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1109\/CBMS.2019.00071","article-title":"Automatic diagnosis of Parkinson disease through handwriting analysis: a cartesian genetic programming approach","author":"Senatore","year":"2019","journal-title":"2019 IEEE 32nd international symposium on computer-based medical systems (CBMS)"},{"key":"10.1016\/j.artmed.2020.101984_bib0165","series-title":"C4.5: programs for machine learning","author":"Quinlan","year":"1993"},{"key":"10.1016\/j.artmed.2020.101984_bib0170","series-title":"Proceedings of the third international conference on document analysis and recognition, volume 1, ICDAR\u201995","article-title":"Random decision forests","author":"Ho","year":"1995"},{"issue":"3","key":"10.1016\/j.artmed.2020.101984_bib0175","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach Learn"},{"key":"10.1016\/j.artmed.2020.101984_bib0180","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1109\/SIBGRAPI.2016.054","article-title":"Deep learning-aided Parkinson\u2019s disease diagnosis from handwritten dynamics","author":"Pereira","year":"2016","journal-title":"2016 29th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI)"},{"key":"10.1016\/j.artmed.2020.101984_bib0185","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.artmed.2018.08.007","article-title":"A survey on computer-assisted Parkinson\u2019s disease diagnosis","volume":"95","author":"Pereira","year":"2019","journal-title":"Artif Intell Med"},{"issue":"21","key":"10.1016\/j.artmed.2020.101984_bib0190","doi-asserted-by":"crossref","DOI":"10.3390\/app9214666","article-title":"Dynamic handwriting analysis for neurodegenerative disease assessment: a literary review","volume":"9","author":"Vessio","year":"2019","journal-title":"Appl Sci"},{"key":"10.1016\/j.artmed.2020.101984_bib0195","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.artmed.2018.04.001","article-title":"Handwritten dynamics assessment through convolutional neural networks: an application to Parkinson\u2019s disease identification","volume":"87","author":"Pereira","year":"2018","journal-title":"Artif Intell Med"},{"issue":"3","key":"10.1016\/j.artmed.2020.101984_bib0200","doi-asserted-by":"crossref","first-page":"508","DOI":"10.1109\/TNSRE.2014.2359997","article-title":"Decision support framework for Parkinson\u2019s disease based on novel handwriting markers","volume":"23","author":"Drotar","year":"2015","journal-title":"IEEE Trans Neural Syst Rehabil Eng"},{"key":"10.1016\/j.artmed.2020.101984_bib0205","first-page":"1","article-title":"Fractional derivatives of online handwriting: A new approach of parkinsonic dysgraphia analysis","author":"Mucha","year":"2018","journal-title":"41st international conference on telecommunications and signal processing (TSP)"},{"key":"10.1016\/j.artmed.2020.101984_bib0210","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.patrec.2018.04.008","article-title":"Assessing visual attributes of handwriting for prediction of neurological disorders \u201ca case study on parkinson\u2019s disease","volume":"121","author":"Moetesum","year":"2019","journal-title":"Pattern Recogn Lett"},{"key":"10.1016\/j.artmed.2020.101984_bib0215","series-title":"Genetic programming: on the programming of computers by means of natural selection, vol. 1","author":"Koza","year":"1992"},{"key":"10.1016\/j.artmed.2020.101984_bib0220","series-title":"Proceedings of the genetic and evolutionary computation conference (GECCO\u201900), Las Vegas, Nevada, USA, July 8\u201312","first-page":"427","article-title":"A Kolmogorov complexity-based genetic programming tool for string compression","author":"De Falco","year":"2000"},{"key":"10.1016\/j.artmed.2020.101984_bib0225","series-title":"Proceedings of the 7th international conference on genetic algorithms, East Lansing, MI, USA, July 19\u201323","first-page":"743","article-title":"Genetic programming estimates of kolmogorov complexity","author":"Falco","year":"1997"},{"key":"10.1016\/j.artmed.2020.101984_bib0230","series-title":"Proceedings of the ACM symposium on applied computing, vol. 2","first-page":"928","article-title":"A novel grammar-based genetic programming approach to clustering","author":"De Falco","year":"2005"},{"issue":"2","key":"10.1016\/j.artmed.2020.101984_bib0235","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1007\/s10115-003-0143-4","article-title":"An evolutionary approach for automatically extracting intelligible classification rules","volume":"7","author":"De Falco","year":"2005","journal-title":"Knowl Inform Syst"},{"key":"10.1016\/j.artmed.2020.101984_bib0240","series-title":"Applied soft computing technologies: the challenge of complexity","first-page":"55","article-title":"An innovative approach to genetic programming-based clustering","author":"De Falco","year":"2006"},{"issue":"12","key":"10.1016\/j.artmed.2020.101984_bib0245","doi-asserted-by":"crossref","first-page":"1439","DOI":"10.1016\/S0167-8655(02)00104-6","article-title":"Character preclassification based on genetic programming","volume":"23","author":"De Stefano","year":"2002","journal-title":"Pattern Recogn Lett"},{"key":"10.1016\/j.artmed.2020.101984_bib0250","series-title":"Proceedings of the international symposium on computers and communications","first-page":"284","article-title":"Accurate estimate of blood glucose through interstitial glucose by genetic programming","author":"De Falco","year":"2017"},{"key":"10.1016\/j.artmed.2020.101984_bib0255","series-title":"Proceedings of the eleventh international joint conference on biomedical engineering systems and technologies \u2013 HEALTHINF, vol. 5","first-page":"625","article-title":"An evolutionary approach for estimating the blood glucose by exploiting interstitial glucose measurements","author":"De Falco","year":"2018"},{"key":"10.1016\/j.artmed.2020.101984_bib0260","doi-asserted-by":"crossref","first-page":"316","DOI":"10.1016\/j.asoc.2019.01.020","article-title":"A genetic programming-based regression for extrapolating a blood glucose-dynamics model from interstitial glucose measurements and their first derivatives","volume":"77","author":"De Falco","year":"2019","journal-title":"Appl Soft Comput"},{"key":"10.1016\/j.artmed.2020.101984_bib0265","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jnca.2018.06.007","article-title":"Genetic programming-based induction of a glucose-dynamics model for telemedicine","volume":"119","author":"De Falco","year":"2018","journal-title":"J Netw Comput Appl"},{"issue":"1","key":"10.1016\/j.artmed.2020.101984_bib0270","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.physa.2006.04.025","article-title":"Performance of genetic programming to extract the trend in noisy data series","volume":"370","author":"Borrelli","year":"2006","journal-title":"Physica A: Stat Mech Appl"},{"issue":"3","key":"10.1016\/j.artmed.2020.101984_bib0275","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1002\/mds.870110313","article-title":"Computational analysis of open loop handwriting movements in Parkinson\u2019s disease: a rapid method to detect dopamimetic effects","volume":"11","author":"Eichhorn","year":"1996","journal-title":"Mov Disord: Off J Mov Disorder Soc"},{"key":"10.1016\/j.artmed.2020.101984_bib0280","series-title":"Data mining, fourth edition: practical machine learning tools and techniques","author":"Witten","year":"2016"},{"key":"10.1016\/j.artmed.2020.101984_bib0285","doi-asserted-by":"crossref","DOI":"10.1136\/jnnp.72.3.315","article-title":"Adaptation of handwriting size under distorted visual feedback in patients with Parkinson\u2019s disease and elderly and young controls","author":"Teulings","year":"2002","journal-title":"J Neurol Neurosurg Psychiatry"},{"key":"10.1016\/j.artmed.2020.101984_bib0290","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1109\/IS.2018.8710470","article-title":"Interpretable machine learning: convolutional neural networks with rbf fuzzy logic classification rules","author":"Xi","year":"2018","journal-title":"2018 international conference on intelligent systems (IS)"},{"issue":"2","key":"10.1016\/j.artmed.2020.101984_bib0295","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1023\/A:1023642126478","article-title":"Extracting interpretable fuzzy rules from RBF networks","volume":"17","author":"Jin","year":"2003","journal-title":"Neural Process Lett"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365720312495?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365720312495?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,11,27]],"date-time":"2022-11-27T12:18:34Z","timestamp":1669551514000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365720312495"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1]]},"references-count":59,"alternative-id":["S0933365720312495"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2020.101984","relation":{},"ISSN":["0933-3657"],"issn-type":[{"value":"0933-3657","type":"print"}],"subject":[],"published":{"date-parts":[[2021,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: Performance vs. interpretability issues","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2020.101984","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101984"}}