{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:06:08Z","timestamp":1728176768070},"reference-count":65,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100010665","name":"H2020 Marie Sk\u0142odowska-Curie Actions","doi-asserted-by":"publisher","award":["691051"],"id":[{"id":"10.13039\/100010665","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["ES 434\/8-1"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002347","name":"Bundesministerium f\u00fcr Bildung und Forschung","doi-asserted-by":"publisher","award":["01IS17070"],"id":[{"id":"10.13039\/501100002347","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004564","name":"Ministarstvo Prosvete, Nauke i Tehnolo\u0161kog Razvoja","doi-asserted-by":"publisher","award":["III45010"],"id":[{"id":"10.13039\/501100004564","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007601","name":"Horizon 2020","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100007601","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010661","name":"Horizon 2020 Framework Programme","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100010661","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2020,11]]},"DOI":"10.1016\/j.artmed.2020.101963","type":"journal-article","created":{"date-parts":[[2020,10,7]],"date-time":"2020-10-07T08:09:00Z","timestamp":1602058140000},"page":"101963","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["Predicting defibrillation success in out-of-hospital cardiac arrested patients: Moving beyond feature design"],"prefix":"10.1016","volume":"110","author":[{"given":"Marija D.","family":"Ivanovi\u0107","sequence":"first","affiliation":[]},{"given":"Julius","family":"Hannink","sequence":"additional","affiliation":[]},{"given":"Matthias","family":"Ring","sequence":"additional","affiliation":[]},{"given":"Fabio","family":"Baronio","sequence":"additional","affiliation":[]},{"given":"Vladan","family":"Vuk\u010devi\u0107","sequence":"additional","affiliation":[]},{"given":"Ljupco","family":"Had\u017eievski","sequence":"additional","affiliation":[]},{"given":"Bjoern","family":"Eskofier","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.artmed.2020.101963_bib0005","doi-asserted-by":"crossref","first-page":"1389","DOI":"10.1001\/jama.289.11.1389","article-title":"Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomize trial","volume":"289","author":"Wik","year":"2003","journal-title":"JAMA"},{"issue":"17","key":"10.1016\/j.artmed.2020.101963_bib0010","doi-asserted-by":"crossref","first-page":"1206","DOI":"10.1056\/NEJM200010263431701","article-title":"Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos","volume":"343","author":"Valenzuela","year":"2000","journal-title":"N Engl J Med"},{"issue":"8","key":"10.1016\/j.artmed.2020.101963_bib0015","doi-asserted-by":"crossref","first-page":"1093","DOI":"10.1016\/j.resuscitation.2013.03.030","article-title":"A composite model of survival from out-of-hospital cardiac arrest using the Cardiac Arrest Registry to Enhance Survival (CARES)","volume":"84","author":"Abrams","year":"2013","journal-title":"Resuscitation"},{"issue":"20","key":"10.1016\/j.artmed.2020.101963_bib0020","doi-asserted-by":"crossref","first-page":"1912","DOI":"10.1056\/NEJMoa1109148","article-title":"Trends in survival after in-hospital cardiac arrest","volume":"367","author":"Girotra","year":"2012","journal-title":"N Engl J Med"},{"issue":"5","key":"10.1016\/j.artmed.2020.101963_bib0025","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1016\/S0196-0644(96)70109-9","article-title":"High discharge survival rate after our-of-hospital ventricular fibrillation with rapid defibrillation by police and paramedics","volume":"28","author":"White","year":"1996","journal-title":"Ann Emerg Med"},{"issue":"9","key":"10.1016\/j.artmed.2020.101963_bib0030","doi-asserted-by":"crossref","first-page":"1065","DOI":"10.1161\/01.CIR.0000028148.62305.69","article-title":"Tripling survival from sudden cardiac arrest via early defibrillation without traditional education in cardiopulmonary resuscitation","volume":"106","author":"Capucci","year":"2002","journal-title":"Circulation"},{"key":"10.1016\/j.artmed.2020.101963_bib0035","doi-asserted-by":"crossref","first-page":"S7","DOI":"10.1016\/j.resuscitation.2005.10.007","article-title":"European Resuscitation Council Guidelines for Resuscitation 2005. Section 2. Adult basic life support and use of automated external defibrillators","volume":"67","author":"Handley","year":"2005","journal-title":"Resuscitation"},{"issue":"10","key":"10.1016\/j.artmed.2020.101963_bib0040","doi-asserted-by":"crossref","first-page":"1277","DOI":"10.1016\/j.resuscitation.2010.08.009","article-title":"European Resuscitation Council Guidelines for Resuscitation 2010. Section 2. Adult basic life support and use of automated external defibrillators","volume":"81","author":"Koster","year":"2010","journal-title":"Resusciation"},{"key":"10.1016\/j.artmed.2020.101963_bib0045","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.resuscitation.2015.07.015","article-title":"European Resuscitation Council Guidelines for Resuscitation 2015. Section 2. Adult basic life support and automated external defibrillation","volume":"95","author":"Perkins","year":"2015","journal-title":"Resuscitation"},{"issue":"4","key":"10.1016\/j.artmed.2020.101963_bib0050","doi-asserted-by":"crossref","first-page":"1579","DOI":"10.1152\/jappl.1995.78.4.1579","article-title":"Mechanisms of myocardial hypercarbic acidosis during cardiac arrest","volume":"78","author":"Johnson","year":"1995","journal-title":"J Appl Physiol"},{"key":"10.1016\/j.artmed.2020.101963_bib0055","doi-asserted-by":"crossref","first-page":"706","DOI":"10.1161\/CIRCULATIONAHA.110.970954","article-title":"Part 6: Electrical therapies: automated external defibrillators, defibrillation, cardioversion, and pacing: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care","volume":"122","author":"Link","year":"2010","journal-title":"Circulation"},{"issue":"13","key":"10.1016\/j.artmed.2020.101963_bib0060","doi-asserted-by":"crossref","first-page":"1182","DOI":"10.1001\/jama.281.13.1182","article-title":"Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation","volume":"281","author":"Cobb","year":"1999","journal-title":"JAMA"},{"issue":"3","key":"10.1016\/j.artmed.2020.101963_bib0065","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1097\/MCC.0b013e3282fc9a9c","article-title":"Predicting defibrillation success","volume":"14","author":"Strohmenger","year":"2008","journal-title":"Curr Opin Crit Care"},{"key":"10.1016\/j.artmed.2020.101963_bib0070","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.cmpb.2015.12.008","article-title":"ECG-based heartbeat classification for arrhythmia detection: a survey","volume":"127","author":"da Luz","year":"2016","journal-title":"Comput Meth Prog Bio"},{"key":"10.1016\/j.artmed.2020.101963_bib0075","doi-asserted-by":"crossref","first-page":"101788","DOI":"10.1016\/j.artmed.2019.101788","article-title":"An intelligent learning approach for improving ECG signal classification and arrhythmia analysis","volume":"103","author":"Sangaiah","year":"2020","journal-title":"Artif Intell Med"},{"key":"10.1016\/j.artmed.2020.101963_bib0080","series-title":"Proc. 14th Symposium on Neural Networks and Applications (NEUREL)","first-page":"1","article-title":"Unsupervised classification of premature ventricular contraction based on RR interval and heartbeat morphology","author":"Atanasoski","year":"2018"},{"key":"10.1016\/j.artmed.2020.101963_bib0085","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4172\/2155-9880.S10-009","article-title":"Prediction of defibrillation outcome by ventricular fibrillation waveform analysis: a clinical review","volume":"S10","author":"He","year":"2013","journal-title":"J Clin Exp Cardiol"},{"key":"10.1016\/j.artmed.2020.101963_bib0090","doi-asserted-by":"crossref","first-page":"015012","DOI":"10.1088\/2057-1976\/aaebec","article-title":"ECG derived feature combination versus single features in predicting defibrillation success in out-of-hospital cardiac arrested patients","volume":"5","author":"Ivanovic","year":"2019","journal-title":"Biomed Phys Eng Express"},{"issue":"9","key":"10.1016\/j.artmed.2020.101963_bib0095","doi-asserted-by":"crossref","first-page":"313","DOI":"10.3390\/e18090313","article-title":"Application of entropy-based features to predict defibrillation outcome in cardiac arrest","volume":"18","author":"Chicote","year":"2016","journal-title":"Entropy"},{"key":"10.1016\/j.artmed.2020.101963_bib0100","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1186\/s13054-015-1142-z","article-title":"Combining multiple ECG features does not improve prediction of defibrillation outcome compared to single features in a large population of out-of-hospital cardiac arrests","volume":"19","author":"He","year":"2015","journal-title":"Crit Care"},{"key":"10.1016\/j.artmed.2020.101963_bib0105","doi-asserted-by":"crossref","first-page":"493472","DOI":"10.1155\/2015\/493472","article-title":"Predict defibrillation outcome using stepping increment of Poincare plot for out-of-hospital ventricular fibrillation cardiac arrest","volume":"2015","author":"Gong","year":"2015","journal-title":"Biomed Res Int"},{"issue":"3","key":"10.1016\/j.artmed.2020.101963_bib0110","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/j.resuscitation.2013.11.021","article-title":"A support vector machine for predicting defibrillation outcome from waveform metrics","volume":"85","author":"Howe","year":"2014","journal-title":"Resuscitation"},{"issue":"12","key":"10.1016\/j.artmed.2020.101963_bib0115","doi-asserted-by":"crossref","first-page":"1704","DOI":"10.1016\/j.resuscitation.2013.08.005","article-title":"Signal integral for optimizing the timing of defibrillation","volume":"84","author":"Wu","year":"2013","journal-title":"Resuscitation"},{"issue":"12","key":"10.1016\/j.artmed.2020.101963_bib0120","doi-asserted-by":"crossref","first-page":"1697","DOI":"10.1016\/j.resuscitation.2013.08.017","article-title":"Amplitude spectrum area to guide resuscitation \u2013 a retrospective analysis during out-of-hospital cardiopulmonary resuscitation in 609 patients with ventricular fibrillation cardiac arrest","volume":"84","author":"Ristagno","year":"2013","journal-title":"Resuscitation"},{"issue":"6","key":"10.1016\/j.artmed.2020.101963_bib0125","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1016\/j.jelectrocard.2013.06.007","article-title":"Predicting defibrillation success in sudden cardiac arrest patients","volume":"46","author":"Firoozabadi","year":"2013","journal-title":"J Electrocardiol"},{"issue":"2","key":"10.1016\/j.artmed.2020.101963_bib0130","first-page":"71","article-title":"Amplitude spectral area: predicting the success of electric shock delivered by defibrillators with different waveforms","volume":"38","author":"Nakagawa","year":"2013","journal-title":"Tokai J Exp Clin Med"},{"key":"10.1016\/j.artmed.2020.101963_bib0135","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1186\/1472-6947-12-116","article-title":"Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning","volume":"12","author":"Shandilya","year":"2012","journal-title":"BMC Med Inform Decis Mak"},{"issue":"1","key":"10.1016\/j.artmed.2020.101963_bib0140","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1007\/s00540-010-1043-x","article-title":"Prompt prediction of successful defibrillation from 1-s ventricular fibrillation waveform in patients with out-of-hospital sudden cardiac arrest","volume":"25","author":"Endoh","year":"2010","journal-title":"J Anesth"},{"issue":"2","key":"10.1016\/j.artmed.2020.101963_bib0145","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.resuscitation.2007.07.019","article-title":"Identifying approaches to improve the accuracy of shock outcome prediction for out-of-hospital cardiac arrest","volume":"76","author":"Gundersen","year":"2008","journal-title":"Resuscitation"},{"issue":"2","key":"10.1016\/j.artmed.2020.101963_bib0150","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.resuscitation.2006.10.002","article-title":"Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks","volume":"73","author":"Neurauter","year":"2007","journal-title":"Resuscitation"},{"issue":"1","key":"10.1016\/j.artmed.2020.101963_bib0155","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.resuscitation.2005.06.013","article-title":"Practical issues in the evaluation of methods for the prediction of shock outcome success in out-of-hospital cardiac arrest patients","volume":"68","author":"Watson","year":"2006","journal-title":"Resuscitation"},{"issue":"1","key":"10.1016\/j.artmed.2020.101963_bib0160","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.resuscitation.2005.05.006","article-title":"Independent evaluation of a defibrillation outcome predictor for out-of-hospital cardiac arrested patients","volume":"67","author":"Eftest\u00f8l","year":"2005","journal-title":"Resuscitation"},{"issue":"3","key":"10.1016\/j.artmed.2020.101963_bib0165","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/j.resuscitation.2004.06.012","article-title":"Improved prediction of defibrillation success for out-of-hospital VF cardiac arrest using wavelet transform methods","volume":"63","author":"Watson","year":"2004","journal-title":"Resuscitation"},{"issue":"5","key":"10.1016\/j.artmed.2020.101963_bib0170","doi-asserted-by":"crossref","first-page":"1179","DOI":"10.1088\/0967-3334\/25\/5\/008","article-title":"Defibrillation shock success estimation by a set of six parameters derived from the electrocardiogram","volume":"25","author":"Jekova","year":"2004","journal-title":"Physiol Meas"},{"issue":"2","key":"10.1016\/j.artmed.2020.101963_bib0175","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/S0300-9572(03)00030-3","article-title":"Predicting defibrillation success by \u2018genetic\u2019 programming in patients with out-of-hospital cardiac arrest","volume":"57","author":"Podbregar","year":"2003","journal-title":"Resuscitation"},{"issue":"1","key":"10.1016\/j.artmed.2020.101963_bib0180","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/S0300-9572(97)00079-8","article-title":"A rule for early outcome classification of out-of-hospital cardiac arrest patients presenting with ventricular fibrillation","volume":"36","author":"Monsieurs","year":"1998","journal-title":"Resuscitation"},{"issue":"3","key":"10.1016\/j.artmed.2020.101963_bib0185","doi-asserted-by":"crossref","first-page":"584","DOI":"10.1378\/chest.111.3.584","article-title":"Analysis of the ventricular fibrillation ECG signal amplitude and frequency parameters as predictors of countershock success in humans","volume":"111","author":"Strohmenger","year":"1997","journal-title":"Chest"},{"issue":"2","key":"10.1016\/j.artmed.2020.101963_bib0190","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/S0196-0644(96)70346-3","article-title":"Signal analysis of the human electrocardiogram during ventricular fibrillation: frequency and amplitude parameters as predictors of successful countershock","volume":"27","author":"Brown","year":"1996","journal-title":"Ann Emerg Med"},{"key":"10.1016\/j.artmed.2020.101963_bib0195","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.artmed.2020.101963_bib0200","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","article-title":"Deep learning in neural networks: an overview","volume":"61","author":"Schmidhuber","year":"2015","journal-title":"Neural Netw"},{"key":"10.1016\/j.artmed.2020.101963_bib0205","series-title":"Neural networks: tricks of the trade","first-page":"599","article-title":"A practical guide to training restricted boltzmann machines","author":"Hinton","year":"2012"},{"issue":"7","key":"10.1016\/j.artmed.2020.101963_bib0210","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","article-title":"A fast learning algorithm for deep belief nets","volume":"18","author":"Hinton","year":"2006","journal-title":"Neural Comput"},{"key":"10.1016\/j.artmed.2020.101963_bib0215","series-title":"Proc. 12th International Conference on Artificial Intelligence and Statistics (AISTATS)","first-page":"448","article-title":"Deep Boltzmann machines","author":"Salakhutdinov","year":"2009"},{"key":"10.1016\/j.artmed.2020.101963_bib0220","series-title":"Proc. 6th International Conference on IT Convergence and Security (ICITCS)","article-title":"An automated ECG beat classification system using convolutional neural networks","author":"Zubair","year":"2016"},{"issue":"1","key":"10.1016\/j.artmed.2020.101963_bib0225","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1016\/j.ins.2016.01.082","article-title":"Deep learning approach for active classification of electrocardiogram signals","volume":"345","author":"Al Rahhal","year":"2016","journal-title":"Inf Sci"},{"issue":"3","key":"10.1016\/j.artmed.2020.101963_bib0230","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1109\/TBME.2015.2468589","article-title":"Real-time patient-specific ECG classification by 1D convolutional neural networks","volume":"63","author":"Kiranyaz","year":"2015","journal-title":"IEEE Trans Biomed Eng"},{"key":"10.1016\/j.artmed.2020.101963_bib0235","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1016\/j.compbiomed.2017.08.022","article-title":"A deep convolutional neural network model to classify heartbeats","volume":"89","author":"Acharya","year":"2017","journal-title":"Comput Biol Med"},{"key":"10.1016\/j.artmed.2020.101963_bib0240","series-title":"Proc. 41st Annual International Conference of the IEEE EMBC","first-page":"1780","article-title":"Deep learning approach for highly specific atrial fibrillation and flutter detection based on RR intervals","author":"Ivanovic","year":"2019"},{"issue":"3","key":"10.1016\/j.artmed.2020.101963_bib0245","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1016\/j.future.2017.08.039","article-title":"Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network","volume":"79","author":"Acharya","year":"2018","journal-title":"Future Gener Comput Syst"},{"key":"10.1016\/j.artmed.2020.101963_bib0250","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.ins.2017.04.012","article-title":"Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network","volume":"405","author":"Acharya","year":"2017","journal-title":"Inf Sci"},{"issue":"12","key":"10.1016\/j.artmed.2020.101963_bib0255","doi-asserted-by":"crossref","first-page":"2095","DOI":"10.1109\/TSMC.2017.2705582","article-title":"Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients","volume":"48","author":"Pourbabaee","year":"2017","journal-title":"IEEE Trans Syst Man Cybern: Syst"},{"key":"10.1016\/j.artmed.2020.101963_bib0260","article-title":"Cardiologist-level arrhythmia detection with convolutional neural networks","author":"Rajpurkar","year":"2017","journal-title":"ArXiv preprint, arXiv"},{"key":"10.1016\/j.artmed.2020.101963_bib0265","doi-asserted-by":"crossref","first-page":"11805","DOI":"10.1109\/ACCESS.2017.2707460","article-title":"HeartID: a multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications","volume":"5","author":"Zhang","year":"2017","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.artmed.2020.101963_bib0270","doi-asserted-by":"crossref","first-page":"1434","DOI":"10.1109\/JBHI.2017.2771768","article-title":"Real-time multilead convolutional neural network for myocardial infraction detection","volume":"22","author":"Liu","year":"2017","journal-title":"IEEE J Biomed Health Inform"},{"key":"10.1016\/j.artmed.2020.101963_bib0275","article-title":"Cardially - ECG waveform dataset for predicting defibrillation outcome in out-of-hospital cardiac arrested patients","volume":"1","author":"Benini","year":"2020","journal-title":"Mendeley Data"},{"key":"10.1016\/j.artmed.2020.101963_bib0280","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.resuscitation.2005.10.008","article-title":"European Resuscitation Council guidelines for resuscitation 2005. Section 3. Electrical therapies: automated external defibrillators, defibrillation, cardioversion and pacing","volume":"67","author":"Deakin","year":"2005","journal-title":"Resuscitation"},{"issue":"1","key":"10.1016\/j.artmed.2020.101963_bib0285","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0300-9572(91)90061-3","volume":"22","year":"1991","journal-title":"Resuscitation"},{"key":"10.1016\/j.artmed.2020.101963_bib0290","article-title":"Neural networks and deep learning","author":"Nielsen","year":"2015","journal-title":"Determination"},{"issue":"1","key":"10.1016\/j.artmed.2020.101963_bib0295","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"SMOTE: synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"J Artif Intell Res"},{"key":"10.1016\/j.artmed.2020.101963_bib0300","series-title":"Proc. 27th International Conference on Machine Learning (ICML-10)","first-page":"807","article-title":"Rectified linear units improve restricted Boltzmann machines","author":"Nair","year":"2010"},{"issue":"1","key":"10.1016\/j.artmed.2020.101963_bib0305","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J Mach Learn Res"},{"key":"10.1016\/j.artmed.2020.101963_bib0310","series-title":"The elements of statistical learning. Data mining, inference, and prediction","author":"Hastie","year":"2008"},{"issue":"69","key":"10.1016\/j.artmed.2020.101963_bib0315","article-title":"Adam: a method for stochastic optimization","volume":"1412","author":"Kingma","year":"2020","journal-title":"ArXiv preprint, arXiv"},{"key":"10.1016\/j.artmed.2020.101963_bib0320","series-title":"Proc. 13th International Conference on Artificial Intelligence and Statistics (AISTATS)","first-page":"249","article-title":"Understanding the difficulty of training deep feedforward neural networks","author":"Glorot","year":"2010"},{"issue":"9","key":"10.1016\/j.artmed.2020.101963_bib0325","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2009","journal-title":"IEEE Trans Knowl Data Eng"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365720312288?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365720312288?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,4]],"date-time":"2022-07-04T11:52:37Z","timestamp":1656935557000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365720312288"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11]]},"references-count":65,"alternative-id":["S0933365720312288"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2020.101963","relation":{},"ISSN":["0933-3657"],"issn-type":[{"value":"0933-3657","type":"print"}],"subject":[],"published":{"date-parts":[[2020,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Predicting defibrillation success in out-of-hospital cardiac arrested patients: Moving beyond feature design","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2020.101963","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101963"}}