{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T02:38:43Z","timestamp":1722911923355},"reference-count":32,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,6,1]],"date-time":"2020-06-01T00:00:00Z","timestamp":1590969600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,6,5]],"date-time":"2021-06-05T00:00:00Z","timestamp":1622851200000},"content-version":"am","delay-in-days":369,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2020,6]]},"DOI":"10.1016\/j.artmed.2020.101870","type":"journal-article","created":{"date-parts":[[2020,5,21]],"date-time":"2020-05-21T11:53:26Z","timestamp":1590062006000},"page":"101870","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging"],"prefix":"10.1016","volume":"106","author":[{"given":"Abdelbasset","family":"Brahim","sequence":"first","affiliation":[]},{"given":"Nicolas","family":"Farrugia","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.artmed.2020.101870_bib0005","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1186\/2047-217X-3-28","article-title":"How machine learning is shaping cognitive neuroimaging","volume":"3","author":"Varoquaux","year":"2014","journal-title":"GigaScience"},{"issue":"3","key":"10.1016\/j.artmed.2020.101870_bib0010","doi-asserted-by":"crossref","DOI":"10.1038\/nn.4502","article-title":"Network neuroscience","volume":"20","author":"Bassett","year":"2017","journal-title":"Nat Neurosci"},{"key":"10.1016\/j.artmed.2020.101870_bib0015","doi-asserted-by":"crossref","unstructured":"J.A. Nielsen, B.A. Zielinski, P.T. Fletcher, A.L. Alexander, N. Lange, E.D. Bigler, J.E. Lainhart, J.S. Anderson, Multisite functional connectivity mri classification of autism: Abide results, Front. Hum. Neurosci. 7 (2013) (599).","DOI":"10.3389\/fnhum.2013.00599"},{"issue":"3","key":"10.1016\/j.artmed.2020.101870_bib0020","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/MSP.2012.2235192","article-title":"The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains","volume":"30","author":"Shuman","year":"2013","journal-title":"IEEE Signal Process Mag"},{"key":"10.1016\/j.artmed.2020.101870_bib0025","series-title":"Spectral graph theory, Vol. 92","author":"Chung","year":"1997"},{"issue":"5","key":"10.1016\/j.artmed.2020.101870_bib0030","doi-asserted-by":"crossref","first-page":"868","DOI":"10.1109\/JPROC.2018.2798928","article-title":"A graph signal processing perspective on functional brain imaging","volume":"106","author":"Huang","year":"2018","journal-title":"Proc IEEE"},{"key":"10.1016\/j.artmed.2020.101870_bib0035","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.compbiomed.2017.10.011","article-title":"Classification of the trabecular bone structure of osteoporotic patients using machine vision","volume":"91","author":"Singh","year":"2017","journal-title":"Comput Biol Med"},{"issue":"12","key":"10.1016\/j.artmed.2020.101870_bib0040","doi-asserted-by":"crossref","first-page":"666","DOI":"10.1016\/j.tics.2013.09.016","article-title":"Functional connectomics from resting-state fmri","volume":"17","author":"Smith","year":"2013","journal-title":"Trends Cognit Sci"},{"key":"10.1016\/j.artmed.2020.101870_bib0045","first-page":"19","article-title":"Clinical applications of resting state functional connectivity","volume":"4","author":"Fox","year":"2010","journal-title":"Front Syst Neurosci"},{"key":"10.1016\/j.artmed.2020.101870_bib0050","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1109\/ISBI.2015.7163812","article-title":"Kernel-based classification for brain connectivity graphs on the riemannian manifold of positive definite matrices","author":"Dodero","year":"2015","journal-title":"2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI)"},{"key":"10.1016\/j.artmed.2020.101870_bib0055","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.cortex.2014.08.011","article-title":"Resting state functional magnetic resonance imaging and neural network classified autism and control","volume":"63","author":"Iidaka","year":"2015","journal-title":"Cortex"},{"issue":"3","key":"10.1016\/j.artmed.2020.101870_bib0060","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1111\/cns.12499","article-title":"Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks","volume":"22","author":"Wee","year":"2016","journal-title":"CNS Neurosci Therapeut"},{"key":"10.1016\/j.artmed.2020.101870_bib0065","doi-asserted-by":"crossref","first-page":"736","DOI":"10.1016\/j.neuroimage.2016.10.045","article-title":"Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example","volume":"147","author":"Abraham","year":"2017","journal-title":"NeuroImage"},{"key":"10.1016\/j.artmed.2020.101870_bib0070","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.nicl.2017.08.017","article-title":"Identification of autism spectrum disorder using deep learning and the abide dataset","volume":"17","author":"Heinsfeld","year":"2018","journal-title":"NeuroImage Clin"},{"key":"10.1016\/j.artmed.2020.101870_bib0075","article-title":"Distance metric learning using graph convolutional networks: Application to functional brain networks","author":"Ktena","year":"2017","journal-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention, Vol. abs\/1703.02161"},{"key":"10.1016\/j.artmed.2020.101870_bib0080","doi-asserted-by":"crossref","first-page":"1018","DOI":"10.3389\/fnins.2018.01018","article-title":"Topological properties of resting-state fmri functional networks improve machine learning-based autism classification","volume":"12","author":"Kazeminejad","year":"2019","journal-title":"Front Neurosci"},{"issue":"7615","key":"10.1016\/j.artmed.2020.101870_bib0085","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1038\/nature18933","article-title":"A multi-modal parcellation of human cerebral cortex","volume":"536","author":"Glasser","year":"2016","journal-title":"Nature"},{"key":"10.1016\/j.artmed.2020.101870_bib0090","series-title":"Computer Analysis of Images and Patterns","first-page":"45","article-title":"Classification of autism spectrum disorder through the graph fourier transform of fmri temporal signals projected on structural connectome","author":"Brahim","year":"2019"},{"issue":"6","key":"10.1016\/j.artmed.2020.101870_bib0095","doi-asserted-by":"crossref","first-page":"659","DOI":"10.1038\/mp.2013.78","article-title":"The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism","volume":"19","author":"Di Martino","year":"2014","journal-title":"Mol Psychiatry"},{"key":"10.1016\/j.artmed.2020.101870_bib0100","unstructured":"Craddock C, Sikka S, Cheung B, Khanuja R, Ghosh SS, Yan C, et al., Towards automated analysis of connectomes: The configurable pipeline for the analysis of connectomes (c-pac), Front Neuroinform (2013) (42)."},{"issue":"7615","key":"10.1016\/j.artmed.2020.101870_bib0105","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1038\/nature18933","article-title":"A multi-modal parcellation of human cerebral cortex","volume":"536","author":"Glasser","year":"2016","journal-title":"Nature"},{"issue":"7","key":"10.1016\/j.artmed.2020.101870_bib0110","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1109\/JSTSP.2016.2600859","article-title":"Graph frequency analysis of brain signals","volume":"10","author":"Huang","year":"2016","journal-title":"IEEE J. Select. Top. Signal Process."},{"key":"10.1016\/j.artmed.2020.101870_bib0115","doi-asserted-by":"crossref","first-page":"4747","DOI":"10.1038\/s41467-019-12765-7","article-title":"Decoupling of brain function from structure reveals regional behavioral specialization in humans","volume":"10","author":"Preti","year":"2019","journal-title":"Nat Commun"},{"key":"10.1016\/j.artmed.2020.101870_bib0120","series-title":"Medical Image Computing and Computer-Assisted Intervention","article-title":"Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling","author":"Varoquaux","year":"2010"},{"key":"10.1016\/j.artmed.2020.101870_bib0125","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.neuroimage.2019.02.062","article-title":"Benchmarking functional connectome-based predictive models for resting-state fmri","volume":"192","author":"Dadi","year":"2019","journal-title":"NeuroImage"},{"issue":"2","key":"10.1016\/j.artmed.2020.101870_bib0130","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1109\/TCBB.2015.2476787","article-title":"Complex network measures in autism spectrum disorders","volume":"15","author":"Sato","year":"2018","journal-title":"IEEE\/ACM Trans Comput Biol Bioinform"},{"key":"10.1016\/j.artmed.2020.101870_bib0135","series-title":"Information Processing in Medical Imaging","first-page":"330","article-title":"Permutation tests for classification: towards statistical significance in image-based studies","author":"Golland","year":"2003"},{"key":"10.1016\/j.artmed.2020.101870_bib0140","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.neuroimage.2017.01.072","article-title":"Statistical power and prediction accuracy in multisite resting-state fmri connectivity","volume":"149","author":"Dansereau","year":"2017","journal-title":"NeuroImage"},{"issue":"9","key":"10.1016\/j.artmed.2020.101870_bib0145","doi-asserted-by":"crossref","first-page":"2799","DOI":"10.1093\/brain\/awt216","article-title":"Biological sex affects the neurobiology of autism","volume":"136","author":"Lai","year":"2013","journal-title":"Brain"},{"key":"10.1016\/j.artmed.2020.101870_bib0150","unstructured":"Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey on graph neural networks, arXiv preprint arXiv:1901.00596."},{"key":"10.1016\/j.artmed.2020.101870_bib0155","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J Mach Learn Res"},{"key":"10.1016\/j.artmed.2020.101870_bib0160","doi-asserted-by":"crossref","first-page":"14","DOI":"10.3389\/fninf.2014.00014","article-title":"Machine learning for neuroimaging with scikit-learn","volume":"8","author":"Abraham","year":"2014","journal-title":"Front Neuroinform"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365719309649?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365719309649?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,19]],"date-time":"2021-04-19T01:05:00Z","timestamp":1618794300000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365719309649"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,6]]},"references-count":32,"alternative-id":["S0933365719309649"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2020.101870","relation":{},"ISSN":["0933-3657"],"issn-type":[{"value":"0933-3657","type":"print"}],"subject":[],"published":{"date-parts":[[2020,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2020.101870","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101870"}}