{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T23:11:56Z","timestamp":1725059516146},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,11,1]],"date-time":"2017-11-01T00:00:00Z","timestamp":1509494400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61370010"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Natural Science Foundation of Fujian Province of China","award":["2014J01253"]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2017,11]]},"DOI":"10.1016\/j.artmed.2017.02.005","type":"journal-article","created":{"date-parts":[[2017,2,28]],"date-time":"2017-02-28T03:00:24Z","timestamp":1488250824000},"page":"82-90","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":184,"special_numbering":"C","title":["A novel hierarchical selective ensemble classifier with bioinformatics application"],"prefix":"10.1016","volume":"83","author":[{"given":"Leyi","family":"Wei","sequence":"first","affiliation":[]},{"given":"Shixiang","family":"Wan","sequence":"additional","affiliation":[]},{"given":"Jiasheng","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Kelvin KL","family":"Wong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.artmed.2017.02.005_bib0005","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1109\/TCYB.2013.2266336","article-title":"Projection-based ensemble learning for ordinal regression","volume":"44","author":"P\u00e9rez-Ortiz","year":"2014","journal-title":"IEEE Trans Cybern"},{"key":"10.1016\/j.artmed.2017.02.005_bib0010","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/s13748-014-0042-9","article-title":"Accuracy\u2013diversity based pruning of classifier ensembles","volume":"2","author":"Bhatnagar","year":"2014","journal-title":"Prog Artif Intell"},{"key":"10.1016\/j.artmed.2017.02.005_bib0015","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1016\/j.neucom.2013.08.004","article-title":"LibD3C: ensemble classifiers with a clustering and dynamic selection strategy","volume":"123","author":"Lin","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.artmed.2017.02.005_bib0020","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1109\/TNB.2015.2450233","article-title":"Enhanced protein fold prediction method through a novel feature extraction technique","volume":"14","author":"Wei","year":"2015","journal-title":"IEEE Trans Nanobiosci"},{"key":"10.1016\/j.artmed.2017.02.005_bib0025","doi-asserted-by":"crossref","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","article-title":"A review on multi-label learning algorithms","volume":"26","author":"Zhang","year":"2014","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"10.1016\/j.artmed.2017.02.005_bib0030","doi-asserted-by":"crossref","first-page":"e56499","DOI":"10.1371\/journal.pone.0056499","article-title":"Hierarchical classification of protein folds using a novel ensemble classifier","volume":"8","author":"Lin","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.artmed.2017.02.005_bib0035","doi-asserted-by":"crossref","first-page":"16895","DOI":"10.18632\/oncotarget.7815","article-title":"iACP: a sequence-based tool for identifying anticancer peptides","volume":"7","author":"Chen","year":"2016","journal-title":"Oncotarget"},{"key":"10.1016\/j.artmed.2017.02.005_bib0040","series-title":"Molecular Therapy \u2014Nucleic Acids","article-title":"iRNA-PseU: Identifying RNA pseudouridine sites","author":"Chen","year":"2016"},{"key":"10.1016\/j.artmed.2017.02.005_bib0045","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1109\/TCBB.2013.146","article-title":"Improved and promising identification of human MicroRNAs by incorporating a high-quality negative set","volume":"11","author":"Wei","year":"2014","journal-title":"IEEE\/ACM Trans Comput Biol Bioinform"},{"key":"10.1016\/j.artmed.2017.02.005_bib0050","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Machine Learning"},{"key":"10.1016\/j.artmed.2017.02.005_bib0055","first-page":"148","article-title":"Experiments with a new boosting algorithm","author":"Freund","year":"1996","journal-title":"Thirteenth International Conference on Machine Learning"},{"key":"10.1016\/j.artmed.2017.02.005_bib0060","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1007\/978-3-642-33460-3_27","article-title":"Diversity regularized ensemble pruning","author":"Li","year":"2012","journal-title":"European Conference on Machine Learning and Knowledge Discovery in Databases"},{"key":"10.1016\/j.artmed.2017.02.005_bib0065","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/S0004-3702(02)00190-X","article-title":"Ensembling neural networks: many could be better than all \u2606","volume":"137","author":"Zhou","year":"2002","journal-title":"Artificial Intelligence"},{"key":"10.1016\/j.artmed.2017.02.005_bib0070","series-title":"Resource Allocation And Its Distributed Implementation","author":"Koszty\u00e1n","year":"2007"},{"key":"10.1016\/j.artmed.2017.02.005_bib0075","doi-asserted-by":"crossref","first-page":"1418","DOI":"10.1016\/j.chb.2007.07.015","article-title":"Navigation methods of special needs users in multimedia systems","volume":"24","author":"Trai","year":"2008","journal-title":"Comput Human Behav"},{"key":"10.1016\/j.artmed.2017.02.005_bib0080","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1016\/j.ipl.2012.05.009","article-title":"Online scheduling with one rearrangement at the end: revisited","volume":"112","author":"Wang","year":"2012","journal-title":"Inf Process Lett"},{"key":"10.1016\/j.artmed.2017.02.005_bib0085","first-page":"32","article-title":"iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework","author":"Liu","year":"2016","journal-title":"Bioinformatics"},{"key":"10.1016\/j.artmed.2017.02.005_bib0090","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TKDE.2011.181","article-title":"A fast clustering-based feature subset selection algorithm for high-dimensional data","volume":"25","author":"Song","year":"2013","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"10.1016\/j.artmed.2017.02.005_bib0095","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.neucom.2015.09.137","article-title":"mGOF-loc: a novel ensemble learning method for human protein subcellular localization prediction","volume":"217","author":"Wei","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.artmed.2017.02.005_bib0100","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1007\/s10994-011-5256-5","article-title":"Classifier chains for multi-label classification","volume":"85","author":"Read","year":"2011","journal-title":"Mach Learn"},{"key":"10.1016\/j.artmed.2017.02.005_bib0105","doi-asserted-by":"crossref","first-page":"5413903","DOI":"10.1155\/2016\/5413903","article-title":"Identification of secretory proteins in mycobacterium tuberculosis using pseudo amino acid composition","volume":"2016","author":"Yang","year":"2016","journal-title":"Biomed. Res. Int."},{"key":"10.1016\/j.artmed.2017.02.005_bib0110","doi-asserted-by":"crossref","first-page":"1269","DOI":"10.1039\/C5MB00883B","article-title":"Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique","volume":"12","author":"Tang","year":"2016","journal-title":"Mol Biosyst"},{"key":"10.1016\/j.artmed.2017.02.005_bib0115","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","article-title":"A survey on feature selection methods \u2606","volume":"40","author":"Chandrashekar","year":"2014","journal-title":"Comput Electr Eng"},{"key":"10.1016\/j.artmed.2017.02.005_bib0120","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1111\/jmi.12421","article-title":"Detection of tubule boundaries based on circular shortest path and polar-transformation of arbitrary shapes","volume":"264","author":"Su","year":"2016","journal-title":"J Microsc"},{"key":"10.1016\/j.artmed.2017.02.005_bib0125","doi-asserted-by":"crossref","first-page":"2118","DOI":"10.3390\/ijms17122118","article-title":"Recent progress in machine learning-based methods for protein fold recognition","volume":"17","author":"Wei","year":"2016","journal-title":"Int J Mol Sci"},{"key":"10.1016\/j.artmed.2017.02.005_bib0130","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.neucom.2016.02.078","article-title":"Exploring local discriminative information from evolutionary profiles for cytokine-receptor interaction prediction","volume":"217","author":"Wei","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.artmed.2017.02.005_bib0135","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.neucom.2013.07.054","article-title":"A novel classifier ensemble method with sparsity and diversity","volume":"134","author":"Yin","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.artmed.2017.02.005_bib0140","series-title":"Simulated Annealing","author":"Dowsland","year":"1993"},{"key":"10.1016\/j.artmed.2017.02.005_bib0145","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1007\/s10115-012-0586-6","article-title":"A weighted voting framework for classifiers ensembles","volume":"38","author":"Kuncheva","year":"2014","journal-title":"Knowl Info Syst"},{"key":"10.1016\/j.artmed.2017.02.005_bib0150","series-title":"UCI Machine Learning Repository","author":"Bache","year":"2013"},{"key":"10.1016\/j.artmed.2017.02.005_bib0155","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1145\/1656274.1656278","article-title":"The WEKA data mining software: an update","volume":"11","author":"Hall","year":"2008","journal-title":"Acm Sigkdd Explorations Newsl"},{"key":"10.1016\/j.artmed.2017.02.005_bib0160","doi-asserted-by":"crossref","first-page":"955","DOI":"10.1093\/nar\/25.5.0955","article-title":"tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence","volume":"25","author":"Lowe","year":"1997","journal-title":"Nucleic Acids Res"},{"key":"10.1016\/j.artmed.2017.02.005_bib0165","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1109\/TNB.2014.2352454","article-title":"An improved protein structural prediction method by incorporating both sequence and structure information","volume":"14","author":"Wei","year":"2015","journal-title":"IEEE Trans Nanobiosci"},{"key":"10.1016\/j.artmed.2017.02.005_bib0170","doi-asserted-by":"crossref","first-page":"298","DOI":"10.1186\/1471-2105-15-298","article-title":"nDNA-prot: identification of DNA-binding proteins based on unbalanced classification","volume":"15","author":"Song","year":"2014","journal-title":"BMC Bioinf"},{"key":"10.1016\/j.artmed.2017.02.005_bib0175","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1471-2105-9-474","article-title":"RNAalifold improved consensus structure prediction for RNA alignments","volume":"9","author":"Bernhart","year":"2008","journal-title":"BMC Bioinf"},{"key":"10.1016\/j.artmed.2017.02.005_bib0180","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1186\/1471-2105-6-310","article-title":"Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine","volume":"6","author":"Xue","year":"2005","journal-title":"BMC Bioinf"},{"key":"10.1016\/j.artmed.2017.02.005_bib0185","first-page":"856","article-title":"Feature selection for high-Dimensional data: a fast correlation-Based filter solution","author":"Yu","year":"2003","journal-title":"Machine Learning, Proceedings of the Twentieth International Conference"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365716305796?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365716305796?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,19]],"date-time":"2019-09-19T04:48:32Z","timestamp":1568868512000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365716305796"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,11]]},"references-count":37,"alternative-id":["S0933365716305796"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2017.02.005","relation":{},"ISSN":["0933-3657"],"issn-type":[{"value":"0933-3657","type":"print"}],"subject":[],"published":{"date-parts":[[2017,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel hierarchical selective ensemble classifier with bioinformatics application","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2017.02.005","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}