{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T15:35:07Z","timestamp":1726760107804},"reference-count":33,"publisher":"Elsevier BV","issue":"3","license":[{"start":{"date-parts":[[2014,11,1]],"date-time":"2014-11-01T00:00:00Z","timestamp":1414800000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002322","name":"Capes","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100004901","name":"FAPEMIG","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100004901","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100003593","name":"CNPq","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["aiimjournal.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2014,11]]},"DOI":"10.1016\/j.artmed.2014.10.001","type":"journal-article","created":{"date-parts":[[2014,10,22]],"date-time":"2014-10-22T12:42:18Z","timestamp":1413981738000},"page":"193-201","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"title":["NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making"],"prefix":"10.1016","volume":"62","author":[{"given":"Fabio Ribeiro","family":"Cerqueira","sequence":"first","affiliation":[]},{"given":"Tiago Geraldo","family":"Ferreira","sequence":"additional","affiliation":[]},{"given":"Alcione","family":"de Paiva Oliveira","sequence":"additional","affiliation":[]},{"given":"Douglas Adriano","family":"Augusto","sequence":"additional","affiliation":[]},{"given":"Eduardo","family":"Krempser","sequence":"additional","affiliation":[]},{"given":"Helio Jos\u00e9","family":"Corr\u00eaa Barbosa","sequence":"additional","affiliation":[]},{"given":"Sylvia","family":"do Carmo Castro Franceschini","sequence":"additional","affiliation":[]},{"given":"Brunnella Alcantara Chagas","family":"de Freitas","sequence":"additional","affiliation":[]},{"given":"Andreia Patricia","family":"Gomes","sequence":"additional","affiliation":[]},{"given":"Rodrigo","family":"Siqueira-Batista","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.artmed.2014.10.001_bib0005","series-title":"Competing on analytics: the new science of winning","author":"Davenport","year":"2007"},{"key":"10.1016\/j.artmed.2014.10.001_bib0010","series-title":"Realizing teracomputing: proceedings of the tenth ECMWF workshop on the use of high performance computing in meteorology","first-page":"165","article-title":"Implementation of data mining techniques for meteorological applications","volume":"2002","author":"Cofino","year":"2003"},{"issue":"6","key":"10.1016\/j.artmed.2014.10.001_bib0015","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1007\/s00535-012-0529-8","article-title":"Algorithm to determine the outcome of patients with acute liver failure: a data-mining analysis using decision trees","volume":"47","author":"Nakayama","year":"2012","journal-title":"J Gastroenterol"},{"issue":"15","key":"10.1016\/j.artmed.2014.10.001_bib0020","doi-asserted-by":"crossref","first-page":"1146","DOI":"10.1212\/WNL.0b013e31824f8056","article-title":"Activity enhances dopaminergic long-duration response in parkinson disease","volume":"78","author":"Kang","year":"2012","journal-title":"Neurology"},{"issue":"2","key":"10.1016\/j.artmed.2014.10.001_bib0025","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.healun.2012.11.008","article-title":"Predicting acute cardiac rejection from donor heart and pre-transplant recipient blood gene expression","volume":"32","author":"Hollander","year":"2013","journal-title":"J Heart Lung Transplant"},{"issue":"4","key":"10.1016\/j.artmed.2014.10.001_bib0030","doi-asserted-by":"crossref","first-page":"220","DOI":"10.4103\/0972-5229.130573","article-title":"Scoring systems in the intensive care unit: a compendium","volume":"18","author":"Rapsang","year":"2014","journal-title":"Indian J Crit Care Med"},{"key":"10.1016\/j.artmed.2014.10.001_bib0035","doi-asserted-by":"crossref","first-page":"818","DOI":"10.1097\/00003246-198510000-00009","article-title":"APACHE II: a severity of disease classification system","volume":"13","author":"Knaus","year":"1985","journal-title":"Crit Care Med"},{"key":"10.1016\/j.artmed.2014.10.001_bib0040","series-title":"Applied Logistic Regression","author":"Hosmer","year":"2013"},{"issue":"9","key":"10.1016\/j.artmed.2014.10.001_bib0045","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1016\/S1350-4533(00)00078-3","article-title":"Clinical decision-support systems for intensive care units using case-based reasoning","volume":"22","author":"Frize","year":"2000","journal-title":"Med Eng Phys"},{"issue":"24","key":"10.1016\/j.artmed.2014.10.001_bib0050","doi-asserted-by":"crossref","first-page":"2957","DOI":"10.1001\/jama.1993.03510240069035","article-title":"A new simplified acute physiology score (SAPS II) based on a European\/North American Multicenter Study","volume":"270","author":"Le Gall","year":"1993","journal-title":"J Am Med Assoc"},{"issue":"6","key":"10.1016\/j.artmed.2014.10.001_bib0055","doi-asserted-by":"crossref","first-page":"R645","DOI":"10.1186\/cc3821","article-title":"Mortality prediction using SAPS II: an update for French intensive care units","volume":"9","author":"Le Gall","year":"2005","journal-title":"Crit Care"},{"issue":"10","key":"10.1016\/j.artmed.2014.10.001_bib0060","doi-asserted-by":"crossref","first-page":"1638","DOI":"10.1097\/00003246-199510000-00007","article-title":"Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome","volume":"23","author":"Marshall","year":"1995","journal-title":"Crit Care Med"},{"issue":"7","key":"10.1016\/j.artmed.2014.10.001_bib0065","doi-asserted-by":"crossref","first-page":"707","DOI":"10.1007\/BF01709751","article-title":"The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction\/failure","volume":"22","author":"Vincent","year":"1996","journal-title":"Intensiv Care Med"},{"issue":"8871","key":"10.1016\/j.artmed.2014.10.001_bib0070","first-page":"626","article-title":"The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units","volume":"342","author":"International Neonatal Network","year":"1993","journal-title":"Lancet"},{"issue":"3","key":"10.1016\/j.artmed.2014.10.001_bib0075","doi-asserted-by":"crossref","first-page":"639","DOI":"10.1016\/j.ccc.2007.05.004","article-title":"Severity of illness and organ failure assessment in adult intensive care units","volume":"23","author":"Afessa","year":"2007","journal-title":"Crit Care Clin"},{"issue":"1","key":"10.1016\/j.artmed.2014.10.001_bib0080","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1145\/1656274.1656278","article-title":"The weka data mining software: An update","volume":"11","author":"Hall","year":"2009","journal-title":"ACM SIGKDD Explor Newslett"},{"key":"10.1016\/j.artmed.2014.10.001_bib0085","series-title":"Clinical, epidemiological and nutritional parameters of premature newborns treated in a neonatal intensive care unit in the municipality of vi\u00e7osa-MG (Portuguese), Master's thesis","author":"Freitas","year":"2011"},{"key":"10.1016\/j.artmed.2014.10.001_bib0090","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1590\/S0103-507X2012000100012","article-title":"Late-onset sepsis in premature newborns treated in a neonatal intensive care unit: a three-years analysis (Portuguese)","volume":"24","author":"Freitas","year":"2012","journal-title":"RBTI-Revista Brasileira de Terapia Intensiva"},{"key":"10.1016\/j.artmed.2014.10.001_bib0095","series-title":"Data mining: concepts and techniques","author":"Han","year":"2011"},{"key":"10.1016\/j.artmed.2014.10.001_bib0100","first-page":"1157","article-title":"An introduction to variable and feature selection","volume":"3","author":"Guyon","year":"2003","journal-title":"J Mach Learn Res Arch"},{"issue":"19","key":"10.1016\/j.artmed.2014.10.001_bib0105","doi-asserted-by":"crossref","first-page":"2507","DOI":"10.1093\/bioinformatics\/btm344","article-title":"A review of feature selection techniques in bioinformatics","volume":"23","author":"Saeys","year":"2007","journal-title":"Bioinformatics"},{"key":"10.1016\/j.artmed.2014.10.001_bib0110","series-title":"Machine Learning","author":"Mitchell","year":"1997"},{"key":"10.1016\/j.artmed.2014.10.001_bib0115","series-title":"Bioinformatics: the machine learning approach","author":"Baldi","year":"2001"},{"key":"10.1016\/j.artmed.2014.10.001_bib0120","series-title":"Introduction to data mining","author":"Tan","year":"2006"},{"key":"10.1016\/j.artmed.2014.10.001_bib0125","series-title":"The perceptron, a perceiving and recognizing automaton Project Para, Cornell Aeronautical Laboratory report","author":"Rosenblatt","year":"1957"},{"key":"10.1016\/j.artmed.2014.10.001_bib0130","series-title":"An Introduction to support vector machines and other kernel-based learning methods","author":"Cristianini","year":"2000"},{"key":"10.1016\/j.artmed.2014.10.001_bib0135","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1038\/nbt1206-1565","article-title":"What is a support vector machine?","volume":"24","author":"Noble","year":"2006","journal-title":"Nat Biotechnol"},{"key":"10.1016\/j.artmed.2014.10.001_bib0140","series-title":"Nonlinear programming: analysis and methods","author":"Avriel","year":"2003"},{"issue":"12","key":"10.1016\/j.artmed.2014.10.001_bib0145","doi-asserted-by":"crossref","first-page":"1052","DOI":"10.1097\/INF.0b013e3181acf6bd","article-title":"Early and late onset sepsis in late preterm infants","volume":"28","author":"Cohen-Wolkowiez","year":"2009","journal-title":"Pediatr Infect Dis J"},{"key":"10.1016\/j.artmed.2014.10.001_bib0150","series-title":"I. of Medicine (U.S.). Committee on understanding premature birth, A. H. outcomes, Preterm birth: causes, consequences, and prevention","author":"Behrman","year":"2007"},{"issue":"4","key":"10.1016\/j.artmed.2014.10.001_bib0155","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1016\/S0146-0005(03)00055-7","article-title":"The NICHD neonatal research network: changes in practice and outcomes during the first 15 years","volume":"27","author":"Fanaroff","year":"2003","journal-title":"Sem Perinatol"},{"issue":"4","key":"10.1016\/j.artmed.2014.10.001_bib0160","first-page":"295","article-title":"Assessment of the profile of births and deaths in a referral hospital","volume":"86","author":"Rego","year":"2010","journal-title":"J Pediatr"},{"key":"10.1016\/j.artmed.2014.10.001_bib0165","series-title":"Usability evaluation in industry","article-title":"SUS: A quick and dirty usability scale","author":"Brooke","year":"1996"}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365714001043?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365714001043?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,28]],"date-time":"2018-09-28T05:53:40Z","timestamp":1538114020000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365714001043"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,11]]},"references-count":33,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2014,11]]}},"alternative-id":["S0933365714001043"],"URL":"https:\/\/doi.org\/10.1016\/j.artmed.2014.10.001","relation":{},"ISSN":["0933-3657"],"issn-type":[{"value":"0933-3657","type":"print"}],"subject":[],"published":{"date-parts":[[2014,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making","name":"articletitle","label":"Article Title"},{"value":"Artificial Intelligence in Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.artmed.2014.10.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}